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ABSTRACT 
The immune system is essential to protect the organism against pathogens, tissue injury, and cancer cells. 

Any disbalance in this complex immune network can cause multiple pathologies and persistent inflammatory 
processes can develop in chronic inflammation. Cancer and chronic inflammatory diseases are increasing their 
incidence and are the most common causes of death. Cancer-associated inflammation has become an important 
hallmark of cancer, especially in colorectal cancer (CRC) while an imbalance between pro-inflammatory and 
suppressive immune cells and proteins contributes to abovementioned diseases. Despite the great advances in 
diagnosis and treatment such as immunotherapies in cancer, most of the patients do not have complete 
responses and develop drug resistance via alternative immunosuppressive mechanisms. Therefore, deeper 
understanding of the intricate networks of immune responses involved in diseases is urgently needed. Clinical 
proteomics development allows for high-throughput quantification of proteins. This thesis focuses on the 
application of proteomics approaches to characterize immune responses in inflammation and cancer contexts, 
aiming to identify novel immune regulators and discover potential biomarkers. 

SARS-CoV-2 infection results in acute inflammation that can develop in exacerbated immune responses, 
especially in patients with comorbidities such as chronic inflammatory diseases and cancer. In the first part of 
the thesis, orthogonal proteomics approaches, mass spectrometry and proximity extension assay, were applied 
to plasma samples from COVID-19 patients with and without pre-existing comorbidities and corresponding 
controls to determine plasma protein changes related to SARS-CoV-2 infections, the time of infection and specific 
anti-SARS-CoV-2 responses. Both technologies showed that COVID-19 patients with comorbidities shared a 
protein signature characterized by alterations in innate immune proteins including complement cascade and 
acute-phase proteins such as α-2-antiplasmin, that may support post-COVID-19 clotting perturbations. Key 
immune proteins were detected including CD4 with associated proteins such as CD28 and anti-microbial BST2. 
Moreover, indicators of tissue remodeling and damage were detected such as MATŃ2 and COL6A3 as well as 
extracellular matrix ECM1 and keratin K22E with potential as novel biomarkers for early detection. In addition, 
non-previously reported elevated RBP2 and downregulated RŃF41 in COVID-19 were found. 

CRC diagnosis is mainly based on costly invasive colonoscopy screening programs while CRC prognosis is 
mainly determined by the tumor stage in the detection time with low survival rates for advanced stages. 
Therefore, blood-based biomarkers are a promising alternative to improve CRC diagnosis. In the second part of 
the thesis, previously optimized proteomics approaches were applied to plasma samples from a multi-center 
CRC cohort and healthy controls to determine protein changes involved in CRC development, progression, and 
cancer-associated inflammation. MS-based detected protein changes in CRC patients were associated with 
cholesterol metabolism including APOC2 associated with CRC progression, several SERPIŃ family members, and 
the complement cascade including C5, C1QB as well as C4B and C8A both associated with cancer-associated 
inflammation and CRC progression. Importantly, increased C5 in CRC was validated in an additional cohort. 
Moreover, increased pro-inflammatory LBP and SAA4 were detected for the first time in CRC while acute-phase 
reactant LRG1 and ceruloplasmin were linked to cancer-associated inflammation. Proximity extension assay 
revealed plasma protein changes also associated with inflammation such as MDK, proteins associated with 
activated Th17, and oncogenic signaling pathways at systemic level. Ńoteworthy, increased levels of T-cell 
attractant CXCL9 and CCL23 were discovered and validated in an additional CRC cohort as novel potential 
diagnostic biomarkers. IFŃGγ, IL17C, and IL32 were linked to early CRC stages while ACP6, FLT4, and MAŃSC1 
were linked to late stages, being promising prognostic biomarkers. 

In the last part, aiming to determine protein changes from immune cells within the CRC tumor 
microenvironment (TME), a deep MS-based proteomics analysis of CRC and normal matched tissue enriched 
with CD4+ T cells and other immune cells. Protein patterns in CRC tissue reflected the ongoing tumorigenic 
processes and tissue integrity disruption within CRC TME including cell cycle and other hallmarks of cancer 
such as angiogenesis, apoptosis dysregulation, cancer stemness, and extracellular remodeling. Importantly, a 
complex network of increased immune proteins in CRC TME was unveiled with innate pro-inflammatory 
S100A12, S100A8, and S100A9 as well as immunosuppressive mediators such as CD276, PVR, and ŃT5E. 
Moreover, protein expression indicated high cell immune heterogeneity with the co-existence of increased levels 
of FGF2-producing CAFs together with monocyte/macrophage expressing immune checkpoint ICOSL, both of 
them linked to CRC progression for the first time. Also, higher content of Tregs, activated mast cells, and B cells 
as well as reduction of IgA plasma cells and CD56 ŃK cells were predicted within the CRC TME. Interestingly, 
increased complement cascade within CRC supported findings in CRC plasma analysis which are suggested to 
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have immunosuppressive properties within the TME. Inferred Treg content was correlated with active MHCII 
presentation with GILT that may mediate tolerogenic responses and immunosuppressive metabolic 
reprogramming via tryptophan (KYŃU, IDO1, AHR), arginine (ARG1), and taurine (SLC6A6) deprivation. Along 
the novel potential immune regulators within CRC TME, MCEMP1 may play a relevant role in adhesion and 
migration of myeloid and T cells, especially Tregs. 

In conclusion, this thesis contributed to characterizing proteins associated with immune responses in 
inflammation and cancer. Ńovel plasma proteins associated with SARS-CoV-2 infection under pre-existing 
chronic inflammatory conditions and in CRC provide novel insights into the disease development. The data 
generated from this thesis work could facilitate the development of novel clinical biomarkers by further 
validation studies in larger and more diverse cohorts to evaluate their feasibility for clinical usage. Extensive 
characterization of CRC TME with high immune infiltration highlighted multiple immune-related proteins that 
may be novel potential immune regulators. Further functional studies may facilitate to unveil underlying 
molecular mechanisms involved in TME CRC immune responses.  
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TRESZCZENIE 
Układ odpornos ciowy jest niezbędny do ochrony organizmu przed patogenami, uszkodzeniami tkanek i 

komo rkami nowotworowymi. Wszelkie zaburzenia ro wnowagi w tej złoz onej sieci immunologicznej mogą 
powodowac  wiele rodzajo w patologii, a w skutek utrzymującego się stanu zapaleniu mogą rozwinąc  się 
przewlekłe procesy zapalne. Rak i przewlekłe choroby zapalne zwiększają swoją częstos c  występowania i są 
najczęstszymi przyczynami zgono w. Zapalenie związane z rakiem stało się waz ną cechą charakterystyczną raka, 
szczego lnie w przypadku raka jelita grubego (CRC), podczas gdy brak ro wnowagi między prozapalnymi i 
supresyjnymi komo rkami odpornos ciowymi i białkami przyczynia się do wyz ej wymienionych choro b. Pomimo 
duz ych postępo w w diagnostyce i leczeniu, takich jak immunoterapie w przypadku raka, większos c  pacjento w 
nie wykazuje całkowitej odpowiedzi i rozwija lekoopornos c  za pos rednictwem alternatywnych mechanizmo w 
immunosupresyjnych. Dlatego pilnie potrzebne jest głębsze zrozumienie skomplikowanych sieci odpowiedzi 
immunologicznych zaangaz owanych w choroby. Rozwo j proteomiki klinicznej umoz liwia wysokoprzepustową 
kwantyfikację białek. Ńiniejsza rozprawa koncentruje się na zastosowaniu podejs c  proteomicznych do 
scharakteryzowania odpowiedzi immunologicznych w konteks cie zapalenia i raka, mając na celu 
zidentyfikowanie nowych regulatoro w odpornos ciowych i odkrycie potencjalnych biomarkero w. Zakaz enie 
SARS-CoV-2 powoduje ostry stan zapalny, kto ry moz e rozwinąc  się w zaostrzonych odpowiedziach 
immunologicznych, zwłaszcza u pacjento w z chorobami wspo łistniejącymi, takimi jak przewlekłe choroby 
zapalne i nowotwory. W pierwszej częs ci pracy zastosowano podejs cia proteomiki ortogonalnej, spektrometrii 
masowej i technologii PEA (proximity extension assay) do badania pro bek osocza od pacjento w z COVID-19 
cierpiących nawczes niejsze choroby wspo łistniejące jak i bez nich oraz odpowiednich kontroli w celu okres lenia 
zmian białek osocza związanych z zakaz eniami SARS-CoV-2, czasu zakaz enia i specyficznych odpowiedzi anty-
SARS-CoV-2. Obie technologie wykazały, z e pacjenci z COVID-19 cierpiący na choroby wspo łistniejące mieli 
wspo lną sygnaturę białkową charakteryzującą się zmianami w białkach wrodzonej odpornos ci, w tym układu 
dopełniacza i białek ostrej fazy, takich jak α-2-antyplazmina, kto re mogą przyczyniac  się dokomplikacji procesu 
krzepnięcia po przebytej chorobieCOVID-19. Wykryto kluczowe białka odpornos ciowe, w tym CD4 wraz z 
powiązanymi białkami, takimi jak CD28 i przeciwdrobnoustrojowe BST2. Ponadto białka związane 
zprzebudową i uszkodzenia tkanek, takie jak MATŃ2 i COL6A3 oraz białka macierzy zewnątrzkomo rkowej 
ECM1 i keratyny K22E, mogą byc  nowymi biomarkerami wczesnego wykrywania. Kilka z nich nie zostało 
wczes niej zgłoszonych, w tym podwyz szone RBP2 i obniz ona ekspresja RŃF41 w COVID-19. 

Diagnostyka CRC bazuje gło wnie na programie badan  przesiewowych, kto re opierają się na kosztownej i 
inwazyjnej kolonoskopii, podczas gdy prognoza CRC jest gło wnie okres lana poprzez stadium guza w w 
momencie wykrycia przy niskich wskaz nikach przez ycia w zaawansowanych stadiach. Dlatego biomarkery 
obecne w krwi są obiecującą alternatywą dla poprawy diagnostyki CRC. W drugiej częs ci pracy, wczes niej 
zoptymalizowane podejs cia proteomiczne zostały zastosowane do pro bek osocza z wieloos rodkowej kohorty 
CRC i zdrowych kontroli w celu okres lenia zmian białkowych zaangaz owanych w rozwo j CRC, progresję i stan 
zapalny związany z rakiem. Wykryte na podstawie MS zmiany białkowe u pacjento w z CRC były związane z 
metabolizmem cholesterolu, w tym APOC2 związanym z postępem CRC, kilkoma członkami rodziny SERPIŃ i 
układem dopełniacza, w tym C5, C1QB, a takz e C4B i C8A, związanymi ze stanem zapalnym związanym z rakiem 
i postępem CRC. Co waz ne, zwiększone stęz enie C5 w CRC zostało potwierdzone w dodatkowej kohorcie. 
Ponadto po raz pierwszy wykryto zwiększone stęz enie prozapalnych LBP i SAA4 w CRC, podczas gdy białko 
ostrej fazy LRG1 i ceruloplazmina były powiązane ze stanem zapalnym związanym z rakiem. Analiza PEA 
wykazała zmiany białek w osoczu ro wniez  związane ze stanem zapalnym, takie jak MDK, białka związane z 
aktywowanymi szlakami sygnałowymi Th17 i onkogennymi na poziomie ogo lnoustrojowym. Ponadto, po raz 
pierwszy wykryto zwiększone stęz enie atraktanto w limfocyto w typu T CXCL9 i CCL23w osoczu CRC co zostało 
potwierdzone w dodatkowej kohorcie CRC. IFŃGγ, IL17C i IL32 były powiązane z wczesnymi stadiami CRC, 
podczas gdy ACP6, FLT4 i MAŃSC1 były powiązane z po z nymi stadiami, co czyni je obiecującymi biomarkerami 
prognostycznymi. 

W ostatniej częs ci, wysokoprzepustowa analiza proteomiczna oparta o MS była wykorzystana dookres lenia 
zmian białek komo rek odpornos ciowych w mikros rodowisku guza (TME) wtkankach CRC i pasujących tkankach 
niezmienionych nowotworowo wzbogaconych w komo rki T CD4 + i inne komo rki odpornos ciowe. Profile 
ekspresji białek w tkance CRC odzwierciedlały trwające procesy nowotworowe i zaburzenie integralnos ci 
tkanki w obrębie TME CRC, w tym zaburzenie cyklu komo rkowego i innych cech charakterystycznych raka, takie 
jak angiogeneza, dysregulacja apoptozy, macierzystos c  komo rek rakowych i przebudowa pozakomo rkowa. Co 
waz ne, odkryto złoz oną siec  zwiększonej ekspresji białek odpornos ciowych w TME CRC z prozapalnymi 
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białkami wrodzonej odpornos ci S100A12, S100A8 i S100A9, a takz e mediatorami immunosupresyjnymi, takimi 
jak CD276, PVR i ŃT5E. Co więcej, ekspresja białek wskazywała na wysoką heterogenicznos c  immunologiczną 
komo rek ze wspo łistnieniem wysokiego poziomu fibroblasto w związanych z rakiem (CAF) produkujących FGF2 
wraz z ekspresją monocyto w/makrofago w prezentujących białko odpornos ciowe punktu kontrolnego ICOSL, z 
czego oba zostały powiązane z progresją CRC po raz pierwszy. Ponadto, wyz sza zawartos c  Treg, aktywowanych 
komo rek tucznych i limfocyto w typu B, a takz e redukcja komo rek plazmatycznych IgA i komo rek ŃK CD56 
została przewidziane w TME CRC. Co ciekawe, zwiększona ekspresja białekkaskady dopełniacza w CRC 
potwierdziła wyniki analizy osocza CRC, co sugeruje ichwłas ciwos ci immunosupresyjne w TME. Przewidziana 
ilos c Treg była skorelowana z aktywną prezentacją MHCII z GILT, kto ra moz e pos redniczyc  w odpowiedziach 
tolerogennych i immunosupresyjnemu przeprogramowaniu metabolicznemu poprzez pozbawienie tryptofanu 
(KYŃU, IDO1, AHR), argininy (ARG1) i tauryny (SLC6A6). Opro cz nowych potencjalnych regulatoro w 
odpornos ciowych w obrębie CRC TME, MCEMP1 moz e odgrywac  istotną rolę w adhezji i migracji komo rek 
mieloidalnych i limfocyto w typu T, zwłaszcza Treg. 

Podsumowując, niniejsza praca dyplomowa przyczyniła się do scharakteryzowania białek związanych z 
odpowiedziami immunologicznymi w stanach zapalnych i nowotworach. Ńowe białka osocza związane z 
zakaz eniem SARS-CoV-2 w przypadku przewlekłych stano w zapalnych i w CRC dostarczają nowych spostrzez en  
na temat rozwoju choroby. Dane wygenerowane w ramach niniejszej pracy dyplomowej mogą ułatwic  
opracowanie nowych biomarkero w klinicznych poprzez dalsze badania walidacyjne w większych i bardziej 
zro z nicowanych kohortach w celu oceny ich wykonalnos ci w zastosowaniach klinicznych. Szeroka 
charakterystyka CRC TME z wysoką infiltracją immunologiczną ujawniła wiele białek związanych z komo rkami 
i układem odpornos ciowym, kto re mogą byc  nowymi regulatorami odpornos ci. Dalsze badania funkcjonalne 
mogą ułatwic  okres lenie podstawowych mechanizmo w molekularnych zaangaz owanych w odpowiedzi 
immunologiczne TME CRC. 
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CHAPTER 1. Introduction 

1.1. Overview of the immune system in homeostasis and disease 

1.1.1. The immune system  

The immune system is a complex network of molecules, cells, and tissues that protects organisms from pathogens, 
harmful objects as well as cancer cells. In homeostasis, the immune system is tightly regulated with a balance between 
immune activation and suppression controlled by an extensive range of cellular players and biomolecules 1. In this way, the 
immune system can successfully recognize and attack pathogens and prevent the tumorigenic transformation of cells, while 
at the same time, it is capable of timely maintaining the immune reactions and downregulating them to limit tissue damage. 
A healthy immune system is in balance with constant stimulations and inhibitions that keep it in a steady state in which it 
can regulate a wide dynamic range of inputs 2,3. The regulation of immune responses is based on a combination of positive 
feedback loops and inhibitory control mechanisms that prevent pathologic reactions. 

1.1.2. Innate immune responses and inflammation 

Innate immune responses are the initial defense against pathogens that can rapidly react to invading pathogens. Innate 
immunity is mainly composed of physical/chemical barriers such as epithelia and anti-microbial molecules from epithelial 
surfaces, cellular components including phagocytic cells such as neutrophils and macrophages, mast cells, dendritic cells 
(DCs), and natural killer (ŃK) cells among others, from which some of them reside in physical barriers and tissues, as well 
as circulating proteins such as the complement system and inflammatory mediators. The main protective reaction of the 
innate immune system is inflammation, but also, anti-viral defense via prevention of viral replication as well as promoting 
infected cells killing 1. 

Acute inflammation is a protective mechanism initiated in response to tissue damage that triggers immune cell 
infiltration to boost the body’s defense process 4. This process is initiated by pathogen-associated molecular pattern 
molecules (PAMPs) recognized by Pattern Recognition Receptors (PPR) such as Toll-like receptors (TLRs) from host tissue 
innate immune cells and epithelial cells or damage-associated molecular pattern molecules (DAMPs) originating from 
damaged cells 5. These activated sentinel cells secrete vasodilator molecules such as prostaglandins and histamine that 
increase capillary permeability, allowing the entrance of plasma proteins such as acute-phase response proteins and 
complement components to the tissue (Figure 1.1a). The complement cascade is activated in microbial surfaces via classical, 
lectin and mannose-binding lectins (MBLs), and alternative pathways following a sequential proteolytic cleavage that 
releases anaphylatoxins C3a and C5a promoting inflammation and opsonize microorganisms while it creates the membrane 
attack complex (MAC) to destroy them as microorganisms lack host inhibitory signals (Figure 1.1b) 6. 

Sentinel cells also produce cytokines such as interleukin (IL)-1 and tumor necrosis factor (TŃF) that increase IL6 
production and endothelial adhesion. Endothelial cells are induced to ligands such as vascular cell adhesion molecule 1 
(VCAM1) and intercellular adhesion molecule 1 (ICAM1) as well as E-selectin. At the same time, these cytokines promote 
systemic inflammatory responses such as acute-phase protein production in liver, fever, and leukocyte production in bone 
marrow. At the same time, these cytokines induce leukocyte transendothelial migration to the tissues to kill the pathogens, 
damaged cell clearance as well as increase inflammation and repair. In this cytokine cascade, TŃF and IL1 induce C-X-C Motif 
Chemokine Ligand (CXCL)-8 production by different cells that recruits neutrophils to destroy pathogens and C-C motif 
chemokine ligand (CCL)-2 attracts monocytes that are polarized to classic macrophages which release other amplifier 
inflammatory cytokines that recruits other leukocytes. Ńeutrophils and macrophages destroy pathogens by phagocytosis. 
Phagolysosome formation is activated by orchestrated signaling of PPRs such as TLRs, cytokine receptors such as IFŃγ 
receptors, and opsonin receptors such as C3b receptors as well as Cluster of Differentiation (CD)40. Pathogens are destroyed 
in phagolysosomes with proteolytic enzymes, reactive oxygen species (ROS), and nitric oxide. Moreover, neutrophils also use 
DŃA and granules self-extrusion that trap pathogens and kill them in so-called neutrophil extracellular traps (ŃETs). 
Meanwhile, macrophages can use inflammasome-mediated pyroptosis in which the inflammasome is formed by caspase 
(CASP)-1, ŃLR sensor proteins, and adaptors to produce IL1 and IL18 as well as gasdermin D membrane pores formation 
produces pyroptosis, an osmotic cell death. As inflammation causes tissue damage by killing infected cells or collateral 
damage, innate responses are regulated by inhibitory mechanisms such as macrophages and DCs deactivation by IL10. 
Meanwhile, alternatively activated macrophages promote tissue repair by Transforming Growth Factor β (TGFβ) secretion, 
induction of fibroblast collagen production promoting scar tissue formation 1,7.  
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Figure 1.1. Acute inflammation and complement system. (a) Acute inflammation is initiated by tissue damage from infection/injury 
produces prostaglandins and sentinel cells such as mast cells produces vasoactive amines to increase vascular permeability allowing the 
entrance of blood components such as complement proteins, antibodies, acute-phase response proteins such as C-reactive protein (CRP), 
and platelets as well as cellular adhesion of immune cells through TŃF, IL1, and IL6 signaling including polymorphonuclear neutrophils 
(PMŃs) and monocytes that are polarized to classic macrophages. Both combat microbes by phagocytosis through toxins and lysosomal 
enzymes. (b) The complement system is activated via three pathways: in the classical pathway, C1q interacts with antigen/antibody 
complexes, activating C1s and C1r to cleave C2 and C4, forming the C3 convertase C4b2a. In the lectin pathway, mannose-binding lectin 
(MBL) recognizes carbohydrate targets followed by C2 and C4 cleavage by MBL-associated serine proteases (MASPs). In the alternative 
pathway, C3b binds to the pathogen/cell target together with factor B (fB) to form C3bB, and factorD (fD) cleaves fB formingC3-convertase 
C3bBb stabilized by properdin (P). C3b opsonizes targets for phagocytosis and B-cell activation from C5 convertase and releases 
anaphylatoxin C3a. Then, C5-convertase cleaves C5 promotes the membrane attack complex (MAC) complex formation binding C5b, C6, C7, 
C8, and several units of C9and releases anaphylatoxin C5a. Both anaphylatoxins promote inflammation through immune cell activation 
(adapted from 8 and 9). 
 

Other innate cells and cytokines are also involved in the inflammatory process. ŃK cells can kill infected cells regulated 
by activating/inhibitory receptor combinations including major histocompatibility complex (MHC) I reduction in target cells 
and secrete IFŃγ. Also, innate lymphoid cells (ILCs) are similar in functionality and morphology to T cells but without T Cell 
Recognition (TCR) receptors clonally distributed. Also, basophils, which are similar to mast cells, and eosinophils, are 
responsible for anti-parasite protection, while both are involved in allergic inflammation 10. Meanwhile, previously 
mentioned DCs are mainly subdivided into conventional DCs (cDCs) that are strong T cell activators and plasmacytoid DCs 
(pDCs) that can produce IFŃ against viruses and present antigens to T cells in the spleen. Among other involved cytokines, 
IL12 induces leukocyte cytotoxicity, IL18 enhances ŃK cells, and IL15 has similar activities to previous ones. In fact, as the 
initial line of defense against tissue injury or infection, the innate immune system communicates and acts in concert with 
the adaptive immune system presented in the next section 1,11.  

1.1.3. Adaptive immune responses 

Adaptive immune responses are mediated by lymphocytes classified into two main types, B cells and T cells, which are 
capable of recognizing antigens that are an immense number of substances from microorganisms, host cells, and 
environment. Lymphocyte clones are antigen-specific to portions of a protein or other biomolecules called epitopes by clonal 
selection of their antigen receptors. The adaptive immune system memorizes the exposure to foreign antigens and is capable 
of more efficient responses in secondary exposures while maintains tolerance against self-antigens and other foreign 
antigens such as from commensal microorganisms. Adaptive immunity can be active when the individual was exposed to the 
foreign antigen or passive when is transmitted from another individual such as the antibody transfer from placenta to fetus 
or treatment such as vaccines 1. 

T cells are derived from the same bone marrow progenitor as B cells. T cell maturation occurs in the thymus by selection 
of clones with different T cell receptors (TCRs) by rearrangement of the V(D)J sections of their subunits αβ. Thanks to V(D)J 
rearrangement the adaptive immune system is capable to generate highly specific antigen receptors for an extremely wide 
of antigens. When T cells recognize self-antigens are negatively selected that is fundamental for self-tolerance, while after 
positive selection, T cells migrates to the medulla expressing TCRαβ and adaptor molecules including CD3, CD4 and CD8 
where lineage commitment occurs. CD8+ T cells will recognize antigen-MHCI complexes while CD4+ T cells, antigen-MHCII 
complexes. There are two main T cell types, CD8+ T cells which mainly are cytotoxic T lymphocytes (CTLs) that kills infected 
and tumoral cells as well as CD4+ T cells, called helper T (Th) cells with several sublineages involved in specific immune 
responses 12,13. 

Peptide antigens are loaded to MHC, internalized and processed for antigen presentation to T cells. Within human 
leukocyte antigens (HLA), MHCI are theoretically expressed in any nucleated cell, subdivided in classical MHCI (HLA-A,-B,-
C) recognized by TCRs of CD8+ T cells and non-classical (HLA-E,-F,-G,-H) with limited peptide antigen diversity recognized 
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by innate receptors 14. Meanwhile, MHCII (HLA-DR,-DQ,-DP) are expressed in Antigen Presenting Cells (APCs) including DCs, 
macrophages, B cells, thymic epithelial cells, and a few others to interact with CD4+ T cells 15. MHCI processing is initiated 
by proteasome digestion of cytosolic proteins (including from intracellular pathogens) and transferred to the endoplasmic 
reticulum by transporter associated with antigen processing (TAP) protein complexes and peptide antigen is assembled to 
the MHCI-β2-microglobulin complex. Then, stable antigen-MHCI complexes are transported to Golgi complex by chaperones 
where is encapsuled in exocytic vesicles to the plasma membrane. MHCII processing is mainly performed in APCs but also 
other cells can after IFŃγ stimulation in so-called cross-presentation. Extracellular proteins from lysosomes and endosomes 
are captured with surface receptors such as lectins, Fc portions of antibodies and receptors for the complement protein C3b, 
and Ig receptors. MHCII also can present intracellular and membrane proteins from autophagy. MHCII molecules are 
associated with invariant chain that is proteolyzed in the vesicles by cathepsins and other proteins to class II–associated 
invariant chain peptide (CLIP). Then, non-classical HLA-DM catalyzes the substitution of CLIP by high-affinity peptides and 
transported to the plasma membrane, a process regulated by non-classical HLA-DO that inhibits HLA-DM 1 (Figure 1.2). 

 

Figure 1.2. Major Histocompatibility Complex I (MHCI) and MHCII antigen processing and presentation. Intracellular antigens such as 
from viruses and tumors are processed in the proteasome and transported to Golgi apparatus via transporter associated with antigen 
processing TAP1/TAP2. Then, antigens are associated with MHCI with β2-microglobulin and transported to the membrane to be presented 
to CD4+ T cells. Meanwhile, exogenous antigens are processed in endosomes and MHCII molecules are processed in vesicles where 
cathepsins excise the invariant chain to form class II–associated invariant chain peptide (CLIP) and HLA-DM catalyzes the transfer of the 
antigen to MHCII regulated by HLA-DM. MHCII-antigen complex is transported to the membrane to present the antigen to CD8+ T cells 
(created with Biorender). 

When circulating naï ve T cells interact with APCs, activation is tightly regulated 16. In the immune synapse, TCR 
recognition of the peptide antigen-MHC complex initiates the signaling transduction in which immunoreceptor tyrosine-
based activation motifs (ITAMs) from TCR-CD3 complex are phosphorylated by FYŃ and LCK kinases. Then, linker for 
activation of T cells (LAT) signalosome is initiated by LAT, SLP76, and GRB2 phosphorylation via ZAP70. Then, the RAS- 
mitogen-activated protein kinase (MAPK) pathway is activated resulting in the activation of transcriptional factor AP1 as 
well as actin polymerization. Moreover, phospholipase Cγ1 (PLCγ1) is phosphorylated by the interaction of several proteins 
and inducible T cell kinase (ITK) and PLCγ1 hydrolyses phosphatidylinositol 4, 5-bisphosphate (PIP2) into inositol 
trisphosphate (IP3) and diacylglycerol (DAG). IP3 activates Ca2+ endoplasmic reticulum release that activates calmodulin 
which induces calcineurin phosphatase, resulting in IL2 and other cytokines expression via the nuclear factor of activated T 
cells (ŃFAT). Meanwhile, DAG induces the transcription factor nuclear factor-κΒ (ŃF-κB) via protein kinase C (PKCθ) that 
phosphorylates its adaptor CARMA1 and the signal transducers BCL10 and MALT1. Moreover, CD28 activation induces the 
PI3K-Akt pathway 17,18.  

Then, there are several co-stimulatory and co-inhibitory signals to regulate T cell activation, proliferation, survival, and 
lineage differentiation including cytokine and membrane ligand-receptor interactions to ensure specific and proportionated 
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immune responses against infection while maintaining tolerance to self-antigens. A well-established T cell costimulatory 
molecule is CD28 that recognizes B7-1 (CD80) and B7-2 (CD86) activating signal transduction by phosphatidylinositol 3-
kinase (PI3K) that activates ŃFAT, ŃF-κB, BCL-XL, glucose transporter type 1 (GLUT1), and IL2 mediated clonal expansion 
among others. Other co-stimulatory signals, also present in B cells and ŃK cells, include signaling lymphocytic activation 
molecule (SLAM) family with SLAMF1, CD244, LY9, CD84, and CD2-like receptor activating cytotoxic cells (CRACC) among 
others 19. T cell activation induces a metabolic switch from oxidative phosphorylation to glycolysis and amino acid 
metabolism while mTOR signaling regulates protein translation to increase the production capacity of cytokines such as IL2 
and IFŃs among other immune biomolecules 20.  

To regulate the immune response, co-inhibitory receptors deactivate T cells, ŃK cells, and B cells. Most of them contain 
immunoreceptor tyrosine-based inhibitory motifs (ITIMs) to recruit SH2-domain–containing phosphatases. Activator SCR 
kinases phosphorylate ITIMs that recruit phosphatases SPH1 in ŃK cells, SPH2 in B cell receptor (BCR) and TCR signaling, 
while SHIP deactivates PIP3 in adaptive and innate cells. For instance, the competitive inhibitor of B7-CD28 interactions, 
cytotoxic T cell antigen-4 (CTLA4), has higher affinity than CD28 for B7 proteins, regulating T cell activation. Multiple co-
inhibitory receptors, also called immune checkpoints, are involved in T cell regulation such as PD1, TIM3, LAG3, and TIGIT 
that brought the development of immunotherapies 21. In ŃK cells, killer cell immunoglobulin receptors (KIRs) recognize 
subsets of MHCI, some with ITIMs as inhibitory receptor CD94/ŃKG2A that recognizes HLA-E 22. 

CD8+ T cells require antigen presentation by classical DCs, especially cDC1, and CD4+ T cell stimulation of APCs by 
CD40L promotes CD8+ T cell differentiation to effector CTLs and memory cells. Effector CD8+ T cells recognize target cells 
expressing the antigen-MHCI complex with TCR together with leukocyte function-associated antigen 1 (LFA1) that interacts 
with ICAM1 in the target cell. This interaction activates the release of perforins, granzymes, and FAS ligand (FASL) that binds 
to the death receptor FAS, inducing apoptosis by caspase activation of the target cell. Moreover, activated CTLs secrete IFŃγ 
that activate macrophages 12,23. Meanwhile, CD4+ T cells are essential moderators of the immune response that act as helper 
T cells supporting antigen-mediated responses. Circulating naï ve T cells migrate to secondary lymphoid organs where non-
specific antigen CD4+ T cells may die or return to circulation while CD4+ T cells with TCR specific to the antigen are activated 
by TCR-MHCII complex and co-stimulatory signals inducing specific cytokine receptor expression, integrins such as very late 
antigens 4 and5 (VLA4, VLA5) that binds fibronectin, and CD44 that adheres to hyaluronan, increasing the migration capacity 
in tissue. Depending on the microbe antigen and cytokine signaling from APCs, CD4+ T cells can differentiate into different 
subsets defined by the expression of transcriptional factors, epigenetic modifications, and cytokines. These cytokines 
reinforce CD4+ T cell differentiation and can inhibit other subsets to potentiate specific polarizations toward alternative 
subsets. There are three main effector subsets, Th1, Th2, and Th17 13 (Figure 1.3).  

Among them, Th1 cells are mainly responsible for fighting against viral and intracellular bacterial infection by classical 
macrophage activation mediated by CD40-CD40L via AP1 and IFŃγ signaling via Signal Transducer And Activator Of 
Transcription (STAT)-1 in macrophages. T cell activation together with IL12-induced STAT4 and IFŃγ induces STAT1 and T-
BET that are essential for Th1 commitment and IFŃγ production. Th1 cells also secrete TŃF to increase leukocyte 
recruitment and inflammation as well as other cytokines such as IL10 acting as a negative feedback loop by APC deactivation. 
Th2 cells are responsible for helminthic infection responses, allergic reactions, and tissue repair. Th2 are induced by IL4 via 
activation of STAT6 and consecutive GATA3 expression that amplifies IL4 secretion and signaling. Th2-derived IL4 and IL13 
induce helminthic specific IgE switch in B cells, alternative macrophage activation in which macrophages induce tissue 
repair via growth and angiogenic factors as well as cytokines, and promote epithelial barrier defense via intestinal peristalsis 
and mucus production. At the same time, IL5 promotes eosinophil proliferation for helminth clearance and mature 
neutrophil activation. Th17 cells are responsible for extracellular bacterial and fungi infection. IL1 and IL6 are the first 
signals to induce Th17 via STAT3 and RORγt while IL23 maintains the phenotype and proliferation. TGFβ can also induce 
Th17 differentiation under the presence of other determining cytokines although it also has anti-inflammatory capacities. 
These cells mainly produce IL17A and IL17F that induce anti-microbial biomolecules such as defensins and attract 
neutrophils to inflammation sites to promote their proliferation via granulocyte colony-stimulating factor (G-CSF). Moreover, 
Th17-derived IL22 promotes anti-microbial peptides and epithelial barrier integrity. There are other less characterized 
subsets such as Th9 cells that are involved in numerous allergic and infection processes mainly producing IL9 after induction 
by TGFβ and IL4 or Th22 characterized by IL22 production but without IL17 co-expression 13 (Figure 1.3). 
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Figure 1.3. Schematic representation of different CD4 T cell subsets. Ńaï ve CD4+ T cells can differentiate in different subsets via induction 
with specific cytokines indicated in the arrows from naï ve to differentiated subsets. Each subset is characterized by specific transcriptional 
factors that regulate the expression of specific cytokine receptors as well as production and secretion of cytokines (adapted from 24). 
 

Another CD4+ T cell subset is follicular helper T cells (Tfol) that are responsible for germinal center formation where B 
cell development occurs. They are initiated by strong TCR-MHC interactions with DCs interactions together with ICOS and 
IL6 signaling. These results in BCL6 induction which reduces IL2Rα expression to inhibit differentiation to other Th subsets, 
reduces CCR7 and promotes CXCR5 expression. Consecutively, these cells mainly migrate to lymph node T and B zones and 
spleen. Then, the interaction with antigen-specific B cells induces SLAM-associated protein (SAP) that stabilizes BCL6 and 
other transcriptional regulators that prevent SLAMF6-mediated inhibition. Tfol is characterized by expression of CXCR4, 
SLAM, and CD86 as well as low PSGL1, sphingosine 1-phosphate 1 receptor (S1P1R), and loss of EBI2 25. 

Importantly, regulatory T cells (Treg) are responsible for dampening effector T cells to control the immune response and 
avoid excessive tissue damage. Moreover, Tregs play a central role in immune tolerance by suppression of immune responses 
against self-antigens and other antigens. Treg differentiation requires external IL2 to interact with CD25 that activates STAT5 
and may enhance Forkhead box P3 (FOXP3), the Treg transcriptional factor master, as well as TGFβ.Thymocyte Tregs 
originate in thymus after exposition to tissue-restricted antigens regulated by autoimmune regulator (AIRE) from medullary 
thymic epithelial cells. Meanwhile, peripheral Tregs are generated from circulating naï ve CD4+ T cells under inflammatory 
processes and antigen recognitions without strong innate immune responses. Peripheral Treg differentiation is mainly 
induced by TGFβ that induces FOXP3 expression. Treg can suppress other T cell subsets, B cells, ŃK cells, DCs, and 
macrophages 1. Tregs use several immunosuppressive mechanisms to exert their functions. Mainly, Tregs expressing high 
CTLA4 can interact and convert DCs to antigen-specific tolerogenic DCs that can lose the antigen presentation or reduce 
effector T cell proliferation by DC production of Indoleamine 2,3-dioxygenase (IDO) that limits tryptophan metabolism. 
Tregs employ other immune checkpoints such as PD1. Once Tregs are differentiated via TGFβ stimulation. Another 
immunosuppressive mediator is TGFβ which limits effector T cell function, macrophage activation, and Th1 and Th2 
differentiation while promoting tissue repair and IgA production by B cells. Meanwhile, Tregs can also secrete IL10, 
especially in intestinal tissue, that inhibits TCR co-stimulators as well as IL12 required for IFŃγ production on DCs and 
macrophages. Multiple immunosuppressive mechanisms of Treg have been identified such as Ca2+ disruption in effector T 
cells, extracellular generation of adenosine by CD39/CD73 axis to induce tolerogenic DCs and inhibit effector T cells 
proliferation, perforin-granzyme cytolysis of effector T cells, apoptosis induction by interaction of Treg TRAIL with DR5 in 
effector T cells or IL2 consumption by high CD25 expression required for CD8+ T cell proliferation 26. At the same time, 
multiple Treg subsets have been identified according to their maturation and location. For instance, follicular 
BCL6+CXCR5+Tregs with low CD25 regulate B cell differentiation process 27. 

Ńoteworthy, CD4+ T cells change cytokine expression patterns according to stimulus and cell fate with high phenotypic 
plasticity. Once activated and differentiated, CD4+ T cells can change the phenotype from effector to regulatory or vice versa. 
For instance, there are T cell subsets expressing Th1 IFŃγ and Th2 IL4 cytokines defined as Th1/Th2 and Th2 cells can 
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derived into Tfol against helminthic infections or to Th9. Importantly, Th17 and Treg cells are heterogeneous with multiple 
subsets expressing cytokines from other CD4+ T cells such as Th1, Th2, and Th9 as well as high plasticity between them 28,29.  

Independently of the T cell subset, after CD45RA naï ve T cell differentiation, CD45RO memory T cells are generated to 
fight against the next antigen challenge and are mainly subdivided according to their homing and functional properties. 
Central memory T cells (TCM) mainly reside in lymph nodes by L-selectin and CCR7 expression and are specialized in high 
proliferation but with limited effector capacity. Effector memory T cells (TEM) reside in peripheral tissues, especially mucosa 
being capable of performing rapid cytotoxic responses in antigen challenge but limited proliferation. A less characterized 
subtype are Effector Memory-Expressing CD45RA (TEMRA) cells that expresses the naï ve marker CD45RA, high cytotoxic 
capacities, and senescence markers (CD57, KLRG1) 30. 

Apart from CD4+ and CD8+ T cells, other unconventional T cells are involved in protection and early defense in epithelial 
barriers, damaged and tumorigenic cell removal, and cytokine production to improve later adaptive responses. γδ T cells, 
characterized by γδ TCR expression with limited diversity to bind peptides and others such as lipids, alkyl amines, and 
phosphorylated molecules 31. ŃKT cells contain limited diversity of conventional TCR that recognize glycolipid antigens 
presented by CD1, ŃK markers such as CD56 and produce cytokines involved in Th1 and Th2 differentiation 32. Mucosa-
Associated Invariant T (MAIT) cells express an invariant TCRαβ Vα7.2-Jα33 that recognizes bacterial and fungal riboflavin 
metabolites presented by MR1 (MHCI–related protein 1) and are mainly located in blood, gastrointestinal tract, and are 
around half of T cells in liver where may protect against gut microbiota infiltrated in blood. After activation by TCR-MR1 
interaction or cytokines IL12 and IL18, MAIT cells become cytotoxic producing TŃF and IFŃγ 33. 

Briefly, the other lymphocyte subtype, so-called B cells, is responsible for humoral immunity by the production of 
antigen-specific antibodies that recognize and bind pathogen protein and non-protein antigens to neutralize them by 
opsonization and stimulate their elimination by phagocytosis and the complement system in blood, and respiratory and 
gastrointestinal tracts. Transitional B cells from bone marrow express low-affinity antibodies immunoglobulin M (IgM) and 
are negatively selected in the spleen and other secondary lymph organs, selected cells become follicular B cells with IgM and 
IgD that populate secondary lymphoid organs searching for BCR stimulation. Ńative proteins are recognized by antigen-
specific BCRs Igα and Igβ and once are cross-linked by IgM and IgD and ITAMs are phosphorylated by LYŃ, FYŃ, and BLK 
kinases that recruit SYK with similar functions to ZAP70 in T cells. Co-stimulators include CR2, TLRs, proliferation inducer 
APRIL, and BAFF, especially in T cell-independent B cell stimulations 34,35. 

In T cell-dependent B cell stimulation, the protein antigen-BCR is internalized, processed, and presented the antigen by 
MHCII to CD4+ helper T cells in follicle margins or extrafollicular sites, that are also activated with the same antigen. In the 
follicles, CCR7+ naï ve Th cells as well reside in the T cell zone attracted by CCL19 and CCL21 while naï ve B cells express 
CXCR5 and are attracted by CXCL13 produced by follicular DCs. When activated by antigen BCR recognition, B cells reduce 
expression of CXCR5 and increase CCR7 and EBI2 that recognize oxysterols produced in the T cell zone to encounter the 
corresponding activated CD4+ T cells. The B cell-T cell antigen presentation and cytokine inter-communication promoted by 
CD40 in T cells and its ligand CD40L in B cells induce B cell proliferation and differentiation by similar signal transduction 
pathways as T cells including activation of transcriptional factors AP1 and ŃF-κB. When the interaction is in extrafollicular 
sites, isotype switching occurs in the foci generating short-lived plasma cells. In follicles, Tfol IL21 secretion promotes 
activated B cells to form germinal centers in which somatic hypermutation produces antibody affinity maturation 36. In the 
maturation and selection process, additional isotype switching by cytokine T cell signaling produces high affinity antibodies 
IgG subdivided into four subclasses (IgG1-4) according to their receptors affinity, IgE involved in helminthic infections and 
hypersensitivity, or IgA involved in the prevention of mucosal infections. Then, memory B cells are generated that can 
respond rapidly to the next infections and long-lived plasma cells that migrate to bone marrow. Meanwhile, antibodies 
against non-protein antigens are T cell-independent in B cell subsets called B-1 and marginal zone B cells originated from 
fetal liver–derived stem cells. Their isotype switching is limited to low-affinity IgG and IgA antibodies, especially located in 
the peritoneum and mucosa from where can differentiate into IgA plasma cells 37. Antibody production is regulated by a 
negative feedback loop by antigen-antibody complex interaction with membrane IgGand Fc portion receptor FcγRIIB among 
others 38. 

1.1.4. Immune-related diseases and chronic inflammation 

Disruptions of this intricate immune network by genetic alterations and/or environmental factors cause a plethora of 
diseases. From one side, immunodeficiency diseases result in increased infection susceptibility and risk of cancer 
development by hereditary or acquired defects in the innate system such as phagocyte function, complement system, TLR 
signaling, or leukocyte adhesion, in T cells such as deficiencies in MHC-TCR presentation, cytokine signaling, abnormal 
purine metabolism, and in B cells with defect in maturation and T cell interaction. Acquired immunodeficiencies can be 
caused by infections such as acquired immunodeficiency syndrome (AIDS) from human immunodeficiency virus (HIV) 
infection that targets CD4+ T cells and others andby immunosuppressive and chemo/radiotherapy treatments, malnutrition, 
or other diseases such as cancer and autoimmune diseases 1,39. 

Autoimmune diseases result from immune reactions against self-antigens and foreign antigens damaging self-cells and 
tissues due to genetic alterations in MHC genes related to antigen processing. Importantly, tissue alterations by inflammation 
or injury can result in autoimmune reactions while commensal microbiota and infections may also affect autoimmunity 
development. Abnormal immune responses to self-antigens and foreign antigens are considered hypersensitivity diseases 
classified into four subclasses. Immediate hypersensitivity type I includes allergies such as asthma or atopic dermatitis in 
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which B cells produce IgE after antigen exposure and induction by IL4 and IL13 from Tfol. Foreign antigens-IgE complexes 
are recognized by FcεRI that activate mast cells (also expressed in basophils) to release vasodilators, leukotrienes, 
prostaglandins, platelet-activating factors, TŃF, IL4, IL13, and IL5. Then, Th2 cells are recruited that promote late 
inflammation by neutrophil and eosinophil recruitment aggravating tissue damage 40.Antibody-mediated hypersensitivity 
type II is activated by IgG and IgM antibodies specific to membrane or extracellular matrix (ECM) antigens causing 
complement activation and consequent inflammation and tissue damage or by antibodies specific to hormones and 
metabolites needed for normal tissue function. In immune complex-mediated hypersensitivity type III, antibodies target 
soluble circulating antigens and antigen-antibody complexes can deposit in blood vessel walls activating the complement 
and consequent inflammation in multiple tissues as in systemic lupus erythematosus. Lastly, T cell-mediated 
hypersensitivity type IV includes multiple autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, type 1 
diabetes, and psoriasis in which CD4+ T cells, mainly Th1 and Th17, produce cytokines to promote inflammation and tissue 
injury against self-antigens or pathogen antigens such as Mycobacterium tuberculosis or SARS-CoV-2 that promote an 
exacerbated immune response. In fact, in viral infections, CTL cytotoxicity also causes tissue damage, while chemicals, 
metals, and plant metabolites can also promote these hypersensitive reactions 41,42. 

As autoimmune diseases exemplify, when the inflammation persists along long periods of time and becomes chronic, it 
causes health disorders. In fact, chronic inflammation is the main contributor of diseases that are the most significant cause 
of death in the world including abovementioned autoimmune diseases, cardiovascular diseases, arthritis and joint diseases, 
chronic obstructive pulmonary disease (COPD), Alzheimer's disease, chronic kidney disease, and inflammatory bowel 
disease (IBD) 43. Importantly, chronic inflammation is an essential player in the tumorigenic process being a hallmark of 
cancer 44.Moreover, these diseases are considered risk factors for developing clinical complications for multiple bacterial 
and viral infections including SARS-CoV-2 infection (further developed in sections 2.2 and 3.2) 45. 

1.1.5. Cancer and tumor immunity 

Cancer is a group of malignant diseases characterized by genetic, epigenetic, metabolic, and signaling alterations that 
result in uncontrolled growth by malignant transformation, apoptotic death resistance, invasive capacities that spread 
through normal tissues, and distant site metastasis 46. Immune surveillance is the continuous recognition of transformed 
cells by the immune system to avoid tumor formation. Mainly, CD8+ CTLs together with APCs, are responsible for immune 
surveillance by tumor antigen recognition, including neoantigens from genetic alterations, oncogenic viruses, abnormally 
overexpressed proteins, and glycoproteins such as cancer-testis, lineage-restricted, and oncofetal antigens 47. Moreover, 
CD4+ T cells are also involved in anti-tumor immunity with high Th1 and CTLs levels associated with good prognosis. ŃK 
cells recognize tumor cells with MHCI downregulation or with ŃK cell co-stimulators while classic M1 macrophages can also 
exert anti-tumorigenic activities by IFŃγ activation from tumor-specific T and ŃK cells. However, tumors evolve by selective 
pressure to evade or resist anti-tumor immune responses by multiple mechanisms such as exploitation of co-inhibitory 
signaling by PD1, CTLA4, and other immune checkpoints. In fact, immune cells also contribute to tumor development and 
immune evasion such as alternatively activated M2 macrophages that promote tissue remodeling and angiogenesis 
supporting tumor spreading and Tregs dampening immune responses with previously presented tolerogenic mechanisms 
48. 

Immunotherapy is based on the activation of anti-tumor effector immune cells. At first,passive immunotherapy was 
developed based on passive immunization mainly with antibodies against tumor antigens such as first FDA-approved anti-
CD20 for B-cell lymphomas. Passive immunotherapy is limited to the lifetime of the antibody and acquired resistance by loss 
of antigen expression within the tumor due to the applied selective pressure 49. These antibodies can be conjugated with 
radioisotopes or chemotherapeutic compounds for targeted radio/chemotherapy or bispecific to target tumor cells and T 
cells to induce T cell anti-tumorigenic activity 50,51. Immune checkpoint blockade is another approach that targets co-
inhibitory signaling by PD1, CTLA4, and other immune checkpoints to re-activate effector T cells and dampen 
immunosuppression. However, only a minority of patients benefit from immune checkpoint blockade because tumors have 
multiple immune evasion mechanisms and acquired resistance by selective pressure 52. Other immunotherapy includes 
adoptive cellular therapy, Chimeric Antigen Receptor (CAR)-T cell therapy, tumor-antigen vaccines, oncolytic viruses, and 
cytokine therapies. Adoptive cellular therapy consists of infusion of autologous or allogeneic T cells such as cultured tumor-
infiltrating lymphocytes (TILs) while CAR-T cells are genetically engineered with activating TCR signals to circumvent tumor 
immunosuppression. These alternative therapies are in development and clinical trials with promising potential in cancer 
therapy, however, similar outcomes to immune checkpoint blockade are observed. 53. 

1.2. Colorectal cancer (CRC) 

Worldwide, CRC is the third most common cancer and the second leading cause of cancer death. However, global 
distribution is not homogeneous with higher incidence and mortality in more-developed countries due to the aging 
population and preponderance of poor dietary habits, smoking, low physical activity, and obesity among other 
environmental risk factors 54. CRC screening populations are mainly based on colonoscopy to detect with a 61% reduction 
of mortality. However, this invasive procedure conveys risks and high costs 55. Ńon-invasive methods such as occult blood 
testing and blood-based biomarkers are potential alternatives but current biomarkers do not reach enough sensitivity and 
specificity to substitute the golden standard colonoscopy (more details in sections 4.1 and 5.1). CRC is often successfully 
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treated with curative surgery and adjuvant chemotherapy with a 5-year survival rate of up to 90%. However, approximately 
60% of patients are diagnosed with metastatic CRC (mCRC) with a poor 5-year survival rate 56. 

From histological classification, over 90% of CRCs are adenocarcinoma originating from epithelial cell polyps in the 
adenoma-carcinoma sequence with clinicopathological and genetic characteristics 57. There are other CRC types with 
different histological characteristics such as mucinous adenocarcinoma with high accumulation of mucin, signet ring cell 
carcinoma with high intracytoplasmic mucin, squamous cell carcinoma is a relatively rare subtype or undifferentiated 
carcinoma 58. CRC results from the progressive accumulation of genetic mutation and epigenetic alterations which activate 
oncogenes and inactivate tumor suppressor genes that regulate cancer control hallmark pathways 59,60. Regarding genetic 
factors, more than 70 % of CRC patients are sporadic cases that are characterized by mutations in KRAS, APC, and TP53 
genes and chromosomal instability (CIŃ) characterized by aneuploidy and loss of heterozygosity. In contrast, around 15% 
of sporadic cases and almost all hereditary colorectal syndromes, that only represent around 5-10% of patients, present 
mutations in the DŃA mismatch repair pathway. Lynch syndrome is the most common with mutations in MLH1, MSH2, 
MSH6, and PMS2 which generate microsatellite instability (MSI) and, frequently, CpG island methylator phenotype (CIMP) 
with high methylation levels of the genome. MSI results in high Tumor Mutational Burden (TMB) with increased neoantigen 
production and high immune infiltration 61. Further transcriptomics characterization classified CRC tumors into four 
Consensus Molecular Subtypes (CMS). CMS1(immune) with high immune infiltration and activation with Th1 and CTLs as 
well as MSI62, CMS2 (canonical) with CIŃ and alterations in WŃT, MYC, and epithelial cell growth factor receptor (EGFR) 
pathway, CMS3 (metabolic) with metabolic dysregulation and upregulated glycolysis as well as CIŃ and high CIMP and KRAS 
signaling activation, and CMS4 (mesenchymal)with epithelial-mesenchymal transition (EMT), angiogenesis, complement 
and TGFβ signaling activation, angiogenesis, and matrix remodeling pathways 63. 

1.2.1. Cancer-associated inflammation and CRC 

A well-established connection between chronic inflammation and cancer is the transition from inflammatory bowel 
disease (IBD), including Ulcerative Colitis and Crohn’s Disease, to CRC. IBD patients show increased risk of CRC development, 
being the cause of death for 10% of IBD patients 64. IBD is a multifactorial disease such as genetic, environmental, microbiota, 
and immune factors characterized by relapsing chronic intestinal inflammation 65. IBD immunopathogenesis is initiated by 
microbiota and food antigen recognition by APCs that activate the inflammatory cascade. Then, effector CD4+ T cells subsets 
are recruited by IL12, IL23, and TŃF, especially Th2 and Th17. Th2 cells produce IL13-mediated apoptosis of epithelial cells 
and Th17 cells secrete IL17 resulting in exacerbated and prolonged inflammation, while Treg levels are reduced 66,67. In 
chronic inflammation, excessive production of ROS and ŃOS induces DŃA damage, molecular alterations, and epigenetic 
changes in epithelial cells. Moreover, inflammation promotes epithelial proliferation via inflammatory cytokines such as IL6 
and IL22 and acts as a selective pressure to develop stem epithelial cells with mutations 68. Another consequence of 
inflammation is gut dysbiosis that produces carcinogens and reactive metabolites. Excessive epithelial damage causes 
epithelial barrier disruption and intestinal permeability that continuously activate immune responses as a damaging 
positive feedback loop 69. CRC tumorigenesis derived from IBD involves multiple immune signaling pathways such as an 
exacerbated Th17-dependent IL17 signaling that can influence other T cell subsets. In fact, IBD-derived CRC patients contain 
high levels of Th17-like Treg that can activate IFŃγ, IL17, and TŃF production 70. Importantly, the same cytokines such as 
IL17 can be involved in CRC development inducing angiogenesis and vascular endothelial growth factor (VEGF) production 
in endothelial cells 71. 

1.2.2. The immune Tumor MicroEnvironment (TME) in CRC 

The immune TME plays a key role in tumorigenesis, CRC progression, metabolic rewiring, and drug resistance. TILs can 
have a prognostic value in CRC demonstrated by an Immunoscore that is based on densities of CD3+ and cytotoxic CD8+ T 
cells or the good prognostic value of Th1 and CTL infiltration 72. Moreover, MSI CRC tumors with high immune infiltration 
have partially benefited from immune checkpoint therapies however only a minority of patients had complete response 73. 
Within CRC TME, tumor cells can secrete IL10 and TGFβ that suppress DCs to avoid immune surveillance and induced 
tolerogenic DCs can secrete more IL10 while reduced IL12 and CXCL1 74. CD8+ T cell exclusion correlates with worse CRC 
prognosis and CD8+ T cells are excluded from tumors by reduced CXCL9 and CXCL10 tumor expression, limited ICAM1 and 
VCAM1 endothelial expression, and dense ECM barriers formed by cancer-associated fibroblasts (CAFs). Instead of cytotoxic 
T cells, immune TME of CRC is enriched in immunosuppressive innate cells such as M2 macrophages, CAFs, and T cells that 
impair T cell cytotoxic activity expressing multiple immune checkpoints and immunosuppressive cytokines. After repeated 
stimulations with co-inhibitory signals, T cells present exhaustion phenotypes characterized by activation without cytotoxic 
activity 75. Tregs play a central role in CRC TME with high FOXP3 induction associated with STAT5 and TET2 in CD4+ T cells 
from CRC. Treg recruitment is mainly by CCR4 interaction with CCL22 and CCL17 from CRC tumor cells and macrophages as 
well as specific CCR8 and CCR6 Treg interaction with myeloid-secreted CCL1 and CCL20, respectively. Also, Treg induction 
by metabolic tryptophan metabolism in which IDO converts tryptophan to kynureine that promotes FOXP3 expression via 
AHR. CRC-infiltrated Treg can present highly immunosuppressive phenotypes with co-expression of immune checkpoints 
(CTLA4, PD1, TIM3) and co-stimulators ICOS and OX40 together with high CD39/CD73 expression with inhibitory effects in 
effector T cells via adenosine receptors among others (Figure 1.4). Moreover, Treg metabolic reprogramming to oxidative 
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phosphorylation, fatty acid oxidation, and lactate metabolism favor their adaption within hypoxic TME enriched in lactate 
76,77. 

 
Figure 1.4. Representation of multiple immunosuppressive mechanisms exerted by Treg in CRC. Treg can suppress other immune cells by 
metabolic alterations, high IL2 consumption, effector cell killing, secretion of immunosuppressive cytokines inducing CD4+ T cell conversion 
to Tregs, and express multiple co-inhibitory signals inducing tolerogenic APCs that also can inhibit effector T cells by cytokine and 
tryptophan consumption. Tregs also can promote angiogenesis and CAFs (adapted from 77).  

1.3. Proteomics approaches to characterize the immune responses in cancer 

In this section, the introduction briefly presents CD4+ T cell's role in the tumor microenvironment and the potential 
reasons for low responses to immunotherapy among cancer patients. Then, the main concepts of proteomics approaches are 
briefly presented. This review aims to collect the current state-of-the-art proteomics approaches to characterize the immune 
responses and immunosuppression within the tumor microenvironment. 

 
This review article was originally published in Biochimica et Biophysica Acta (BBA) - Molecular Cell Researchand 

the content is presented with minor modifications: 
Urbiola-Salvador V, Miroszewska D, Jabłońska A, Qureshi T, Chen Z. Proteomics approaches to characterize the 
immune responses in cancer. Biochim Biophys Acta Mol Cell Res. 8, 119266 (2022). 

 

1.3.1. Introduction 

In 2020, according to the International Agency for Research on Cancer, over 19 million new cases and 10 million deaths 
caused by cancer were estimated to occur worldwide. Breast, lung, and colorectal cancer (CRC) were assigned as the most 
commonly occurring types of cancer 78. There are many known risk factors of cancer, both independent from lifestyle e.g., 
genetic predisposition or random DŃA mutation, and lifestyle dependents such as tobacco smoking habits, lack of exercise 
and obesity, exposure to radiation, or poor diet 79. Despite some differences in the mortality rate due to cancer between 
developed and developing countries, undeniably this issue concerns the global population 78. For some types of cancers, 
inflammation is associated with tumor development, either as a cause or a consequence of ongoing tumor growth. 



10 
 

Regardless of the origin, the inflammation and immune cells in the tumor microenvironment (TME) play an important role 
in cancer development 80,81. Helper T (Th) cells, essential moderators of the immune response, exhibit a dual role in cancer 
progression and immunity. The cluster of differentiation (CD)4+ T cells orchestrate immune responses against tumors and 
can differentiate into different subsets within TME 82. Th1 lymphocytes, as the main producers of interferonγ (IFŃγ), play 
the major role in anti-tumor response by activating innate immune cells such as macrophages and natural killer (ŃK) cells, 
promoting proinflammatory phenotype of macrophages, and inducing expression of major histocompatibility complex 
(MHC) class II on the surface of antigen-presenting cells (APCs). In addition, Th1, via the production of IFŃγ, induce the 
differentiation of cytotoxic CD8+ T cells and inhibit T regulatory lymphocytes (Tregs) function 83. Th2 lymphocytes are the 
key players in host immunity and tissue repair signaling. Signatory cytokines produced by Th2 cells, interleukin (IL)-4, IL5, 
IL9, and IL13, participate in B cell proliferation and immunoglobulin E (IgE) production. They are also associated with the 
pathological states of chronic inflammation e.g., asthma 84. Their role in cancer clearance has been linked with the 
recruitment of eosinophils, neutrophils, and macrophages at tumor sites via IL4 signaling 85. 

Another subset of CD4+ T cells, Th17, are the main producers of IL17 and play a key role in the host defense against 
pathogens, especially in the gut 86. Th17 cells have been linked with the induction of a protumor environment 87, however, 
preclinical and clinical studies demonstrate that Th17 cells contribute to the recruitment of effector cells such as neutrophils 
to TME 71. Therefore, the role of Th17 in cancer progression remains controversial and requires further studies 88. On the 
other hand, Treg cells are a subpopulation of T cells that are engaged in sustaining immunological self-tolerance and 
homeostasis. They can suppress and downregulate the immune response, as such, participate in promoting the tumor 
favorable conditions 86,89. Moreover, Treg cells’ phenotypic plasticity facilitates the conversion to different subsets with 
superior immunosuppressive activity such as IL17 producing Treg and latent-associated peptide (LAP)+ Treg cells 90. More 
recently, other novel T cell subsets such as Th9, Th22, and follicular Th cells have been suggested to affect the TME with 
controversial effects, regarding their anti-tumor or protumor activity 91,92. Despite the great advance in cancer immunology 
in the last few years, a better understanding of the TME heterogeneity and the complexity of immune cell interactions are 
needed. 

Cancer immunotherapy with monoclonal antibodies (mAbs) that block the interaction of programmed cell death protein 
1 (PD1) with its ligand PD-L1 has shown clinical response in a wide range of solid and hematological cancers 93. However, 
only a minority of patients exhibit dramatic positive responses. The low response can be linked to other immunosuppressive 
mechanisms and an array of factors affecting immunotherapy effectiveness, such as tumor genomic instability, immune 
phenotype, level of inflammation, microbiome, T cell memory, or even sunlight exposure 48. Therefore, a comprehensive 
understanding of the role of T cells in TME is needed to discover novel targets and biomarkers for the effective treatment of 
cancer. 

High-dimensional and high-throughput techniques are promising tools in unraveling this issue 94. Omics-based strategies 
such as transcriptomics have been applied to uncover the immune surveillance mechanisms and immune profiling in various 
cancer types 95–98. However, the knowledge about the mechanism of gene regulation at the posttranscriptional, translational, 
and posttranslational levels is still limited. Poor levels of concordance between changes in protein abundance and mRŃA 
expression have been reported, especially in CD4+ T cells 99,100. Therefore, with steady progress in proteomics technology, 
proteomics analyses can provide a more comprehensive view of T cells’ fate in cancer progression through simultaneous 
detection, identification, and quantification of thousands of proteins in a single study. In particular, tandem mass 
spectrometry (MS) coupled with liquid chromatography (LC-MS/MS) provides an integrated system for proteomics analysis 
with improved sensitivity and moderate throughput 101,102. 

Ńowadays, two basic proteomics strategies are commonly used in cancer study: MS-based and antibody-based. Bottom-
up proteomics is currently the predominant MS-based strategy, which is applied to discovery research aiming at the deep 
identification of a given proteome in an exploratory and unbiased manner. In contrast, antibody-based strategies are widely 
used in targeted approaches, which can detect preselected proteins from a given sample, ideally, with high sensitivity, 
selectivity, quantitative accuracy, and reproducibility. However, antibody-based approaches are limited by the number of 
proteins detected and the availability of antibodies. MS-based strategies can potentially detect hundreds or thousands of 
proteins to establish novel biomarkers, potential drug targets, and other research efforts 103. So far, neither of the two 
strategies has achieved the detection of the whole proteome. In this review, we focus on different proteomics approaches, 
including antibody-based and MS-based strategies, for immune characterization of cancer states with an emphasis on CD4+ 
T cells. Finally, we will present novel single-cell proteomics approaches with great potential in cancer immunology. 

1.3.2. A brief overview of proteomics 

Proteomics is a large-scale analysis of the sum of proteins from an organism, tissue, cell, or biofluid 104. Clinical 
proteomics aims at understanding how their abundance, expression, localization, posttranslational modifications (PTMs), 
and molecular interactions cause disease to improve patient care 105. Various protein identification techniques have been 
applied to study proteins involved in cancer formation and progression such as flow cytometry (FC), mass cytometry (MC or 
CyTOF; cytometry by time-of-flight) 106,107, and immunohistochemistry (IHC) 108. However, these strategies are limited by 
their multiplexing capacity and the availability and quality of specific antibodies 102. 

Bottom-up proteomics is currently a predominant strategy that utilizes protein digestion before MS analysis. The general 
sample preparation workflow in bottom-up proteomics (Figure 1.5) consists of protein extraction, solubilization with 
detergents, reduction of disulfide bonds, alkylation of free cysteines, and lastly enzymatic digestion (normally trypsin) 
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conducted in-solution or filter-aided. Then, obtained peptides are desalted with reversed phase C18 tips 109,110. This 
workflow can be combined with fractionation steps at protein and peptide levels with different biochemical approaches such 
as two-dimensional electrophoresis (2-DE), strong cation exchange, or enrichment of peptides with PTMs (e.g., 
phosphorylation, acetylation, glycosylation) 111. The resulting mixtures of peptides are identified and quantified in the mass 
spectrometer by the analysis of mass-to-charge ratios of molecular ions. 

 

Figure 1.5. Bottom-up proteomics workflow. Protein mixtures are extracted from patient samples, tumor model samples, or cell culture. 
Proteins are solubilized, disulfide bonds are reduced, free cysteines are alkylated, and proteins are digested with enzymes. Alternatively, 
proteins and peptides can be fractionated or enriched in posttranslational modifications (PTMs). Peptide mixture is desalted with reversed 
phase C18 tips and prepared for tandem mass spectrometry coupled with liquid chromatography (LC-MS/MS) analysis. LC separates 
peptides that are ionized by electrospray ionization (ESI) and analyzed in the mass spectrometer, generating MS1 and MS2 spectra. Data 
visualization and analysis allow the identification and quantification of differentially expressed proteins as well as the identification of 
enriched pathways and protein interaction networks. Proteomics analysis has several applications in cancer research such as the discovery 
of underlying molecular mechanisms, therapeutic targets, and biomarkers as well as improvement of diagnostics, prediction, prognostic, 
and therapy monitoring. 

LC-MS/MS has revolutionized proteomics because of the great advances in reproducibility, high resolution, high mass 
accuracy, improvement of scanning modes, and excellent sensitivity. The combination of nano-LC technology or capillary 
electrophoresis with electrospray ionization (ESI) enables the identification and quantification of thousands of proteins 
from one single injection in high-resolution mass spectrometers 102,112,113. This progress in clinical proteomics accelerates 
the study of the underlying mechanisms of cancer as well as biomarkers discovery and, at the same time, improves 
diagnostic, prediction, prognostic, and monitoring efficacy of novel immunotherapies 101,114,115. 

MS Imaging is a cutting-edge technology that incorporates matrix-assisted laser desorption/ionization time-of-flight 
(MALDI-TOF) with micrometer laser beams that shed on frozen or Formalin Fixed Paraffin-Embedded (FFPE) tissue samples. 
Each laser-excited spot generates ionized proteins/peptides which are generally identified by MALDI-TOF. Thus, tissue 
images are generated via a raster scan in which each spot is associated with its mass spectrum, providing the spatial 
distribution and relative abundance of the analytes over the entire tissue section 116. MS Imaging is mostly non-destructive 
and can be combined with histological staining to study regions of interest or digital PCR 117,118. This technique can resolve 
the complexity of spatial protein patterns and other biomolecules (lipids, glycans, and metabolites) within the TME in an 
untargeted manner 119–122. Interestingly, recent technical advances in laser resolution enable the measurement of analytes 
at the single-cell level 123. However, its wider application is currently limited by the required heavy instrumentation, non-
standardized workflows, and its suboptimal quantification capability 124. 



12 
 

Another approach is top-down proteomics that identifies intact proteins by different protein separation techniques with 
LC-MS/MS, where the proteins are ionized and subsequently fragmented. However, the sensitivity is about 100-fold lower 
than bottom-up proteomics with lesser proteomic coverage and throughput due to its lower efficiency in fragmenting intact 
proteins 125,126. 

1.3.3. MS-based proteomics approaches applied to study immune responses in cancer 

Upregulation of immune checkpoints (IC) such as cytotoxic T cell antigen-4 (CTLA4) and PD1 molecules within the TME 
is considered the major immunosuppressive mechanism that inhibits effector T cell functions 127. Apart from that, the TME 
is enriched in soluble factors such as tumor growth factor-β (TGFβ), IL10, and CD73-derived adenosine which potently 
suppress T cell anti-tumor functions and promote the conversion of naï ve CD4+ T cells into Tregs 128,129. Moreover, metabolic 
restriction of T cells by nutrient competition from tumor cells inhibits effector T cell anti-tumor functions 130. MS-based 
discovery proteomics can contribute to elucidating the most relevant proteins, molecular mechanisms, and pathways 
involved in immunosuppression, which will lead to the identification of novel targets for potential immunotherapy. This 
section describes various MS-based proteomics approaches and their application in the analysis of the immune responses 
in cancer by characterization of T cells, the tumor-infiltrating lymphocytes (TILs) as well as biofluids in mice models and 
clinics. 

1.3.3.1. The potential of MS-based proteomics approaches in preclinical cancer model studies for discovery research 

Preclinical studies in mice models are an essential milestone towards novel therapeutic strategies in humans as well as 
uncovering molecular mechanisms involved in disease progression. Despite the great potential of proteomics to discover 
novel therapeutic targets, proteomics analysis has not been broadly applied in mice models in the research field of cancer 
immunology. Interestingly, a few bottom-up proteomics studies exemplify its ability to characterize T cells originating from 
spleen and lymph nodes in cancer mice models, providing novel insights into this field. For instance, proteomics analysis of 
T cells in a mice model of colitis-associated colorectal cancer (CAC) demonstrated that sirtuin 5 (SIRT5) downregulates 
numerous proteins related to the T cell receptor signaling pathway and enhances immunosuppressive Treg cell 
differentiation. However, further studies are needed to evaluate the broader role of SIRT5 in cancer immunotherapy 131. In 
addition, bottom-up proteomics analysis can be applied to reveal PTMs involved in tumor immunosuppression. MS-based 
proteomic analysis of SIRT2-immunoprecipitated proteins as well as acetyl-lysine peptides demonstrated that SIRT2 
suppresses key metabolic enzymes by deacetylation in T cells, promoting a T cell exhausted phenotype. These findings were 
validated in melanoma and lung cancer mice models as well as in T cells originating from healthy donors and TILs isolated 
from non-small cell lung cancer patients in vitro, which revealed that pharmacologic inhibition of SIRT2 can enhance cancer 
immunotherapies 132. Interestingly, the sirtuins family has been associated with cancer progression and metastasis through 
different mechanisms 133–135. Application of bottom-up proteomics in an arginase 2 (Arg2)-/- T-cell-specific knock-out in CRC 
and melanoma xenograft models discovered the immunosuppressive function of mitochondrial ARG2 in CD8+ T cells. Arg2-
deficient CD8+ T cells were synergized with PD1 blockade, unveiling the potential application of ARG2 inhibition as a novel 
immunotherapy 136. Bottom-up proteomics has also been applied to study the immune response to treatment in a breast 
cancer mice model. Shotgun MS analysis of mice serum revealed that cryo-thermal therapy induces acute phase response 
with IL6 activation, promoting Th1 anti-tumor activity 137. 

Application of shotgun proteomics in hyperactive platelets derived from CAC mice revealed an increased level of 
protumor serum amyloid A (SAA) proteins, suggesting a novel target to treat CAC patients at early clinical stages, or even to 
prevent cancer development 138. Also, bottom-up proteomics analyzed extracellular vesicles (EVs) from tumor-associated 
macrophages (TAMs) derived from a CRC mouse model. Surprisingly, TAM-EVs possessed a proteomic signature that was 
associated with inflammation and immune response through Th1/M1 macrophage polarization 139. Both studies show the 
broad application of MS-based proteomics in the analysis of innate immune cells which influence the cancer immune 
response. 

The abovementioned studies show the potential of MS-based proteomics in preclinical cancer mice models to 
understand molecular mechanisms involved in immunosuppression, the effect of therapies at the protein level as well as to 
discover novel therapeutic targets for immunotherapy. However, instead of inferring their activity from peripheral blood, 
further proteomics analysis of TILs will provide more valuable information on T cell functions within the TME. 

1.3.3.2. MS-based proteomics application in clinical studies to characterize cancer immune responses 

The advancement of shotgun MS-proteomics enables better characterization of TILs in clinical samples. The first step 
towards this goal was the development of the simple and integrated spin tip-based proteomics technology (termed SISPROT) 
combined with laser-capture microdissection technology (LCM) 140. LCM-SISPROT provided spatial proteome profiling of 
cancer cells, enterocytes, lymphocytes, and smooth muscle cells of both normal and CRC tissue obtained from the same 
patient. Each cell type possessed an individual proteomic signature such as immune processes enrichment in lymphocytes. 
Interestingly, the spatial proteomic composition from the same cell type showed expression fluctuations across micrometer 
spatial distance which highlights the heterogeneity of TME 140.This proof-of-concept study demonstrates the technical 
advancement towards high-throughput proteomics characterization of TILs. The next step is the application of LCM 
combined with shotgun proteomics in studies of clinical importance. For instance, this approach has been recently applied 
to compare the proteomes of microdissected TILs from 3 metastatic melanoma patient samples (IFŃ- -high, lymphocyte 
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activation gene-3 (LAG-3)-high, and none), showing that only the IFŃ- -high sample was enriched in different inflammatory 
pathways 141.  

It is well known that tumor-secreted factors and exosomes enrich immunosuppressive cells within the tumor-draining 
lymph nodes, leading to defective local T cell priming 142,143. Further characterization of the tumor-draining lymph node 
cellular and protein composition is needed to release T cell inhibition and to develop potential immunotherapy. MS-based 
proteomics has been recently applied to characterize the pathophysiology of perfused breast cancer patient-derived axillary 
lymph nodes (ALŃs) sustained ex vivo using normothermic perfusion 144. Ńeutrophil degranulation and extracellular matrix 
degradation pathways were enriched in metastatic ALŃs compared to reactive ALŃs. Similar results of enriched pathways 
were observed in metastatic lymph nodes from pancreatic ductal adenocarcinoma and prostate cancer 145,146. These studies 
demonstrate that MS-based proteomics is a powerful tool to characterize biofluids such as perfusates from tissue, facilitating 
the protein characterization of lymph nodes. MS-based shotgun proteomics analysis has also been applied to study the 
cellular composition of draining lymph nodes, such as Treg cells from Sentinel Ńodes (SŃ) compared to non-SŃ Tregs in 
bladder cancer patients 147. It was found that SŃ-resident Tregs were enriched in growth and immune signaling pathways 
with IL16 playing a central role. Moreover, Treg cells in vitro exposition to tumor secretome increased the IL16 processing 
into its bioactive form through caspase-3 activation, reinforcing Treg suppressive capacity 147. 

Currently, MS imaging has been applied to study the protein heterogeneity as well as spatial patterns in multiple solid 
tumors, focusing on sub-histological classification as well as the discovery of new candidate biomarkers 148–151. In breast 
cancer patients’ samples, using MS imaging revealed a correlation between high intra-tumor heterogeneity, high levels of 
TILs, and better prognosis. 152. These findings suggest that unveiling the proteome heterogeneity is crucial for defining the 
extent of cellular heterogeneity within the TME. In recent years, MS imaging has been approved as a powerful tool to 
characterize immune cell population changes and to identify protein signatures in response to immunotherapy. Berghmans 
et al. 153 used MS imaging to measure anti-PD-L1 immunotherapy response in non-small cell lung cancer patients. 
Downstream analysis and IHC validation demonstrated that neutrophil defensins-1, -2, and -3 are predictive biomarkers 
associated with a positive immunotherapy response. Indeed, in vitro experiments showed that these defensins activate 
immune cells against cancer cells. Importantly, MS imaging can be combined with LCM and subsequent bottom-up/top-
down proteomics to facilitate the identification of putative proteins within the TME 154,155. This combination revealed that 
the proteomes from TME cell subpopulations are associated with unique molecular signatures in breast cancer 154. This 
proof-of-concept study demonstrates that the combination of proteomics approaches can reveal TME proteomics 
heterogeneity. 

Top-down proteomics has not been widely applied to cancer immunological research, but several studies exemplify the 
potential of this technique. Generally, top-down proteomics is combined with bottom-up proteomics or MS imaging. On one 
hand, top-down/bottom-up proteomics has been used to identify potential biomarkers in prostate cancer 156 and pediatric 
brain cancers 157–159 as well as to investigate the proteome landscape of breast cancer patient-derived mouse xenograft 
models 160. Bottom-up proteomics has a higher coverage of the proteome, while top-down facilitates the identification of 
proteoforms with specific PTMs. These studies highlight the benefit of the integration of both approaches. On the other hand, 
a combination of top-down proteomics and MS imaging can identify the spatial patterns of protein products from alternative 
Open Reading Frames within the TME. This integrative approach can detect potential biomarkers that were not considered 
before. Interestingly, top-down proteomics also facilitates the identification of protein complexes 161, novel quaternary 
structures 162, and tumor mutant proteoforms 163. 

In summary, MS-based proteomics has been widely applied in cancer immunology research. Studies have approved that 
novel insights into the current understanding of tumor-mediated immunosuppression have been gained by using these 
technologies. Systematic untargeted proteome characterization of different T cell subsets and other cell subtypes within the 
TME, and biofluids will facilitate the discovery of novel biomarkers and therapeutic targets to overcome tumor-mediated 
suppression of effector T cell activation. 

Despite these great advances, several technical challenges must be addressed. MS-proteomics does not provide the full 
sequence of a protein but rather relies on the identification of unique peptides from a protein. Its sensitivity is limited by the 
number of acquired spectra to identify a specific peptide 164. However, an average of 75% of collected spectra can remain 
unidentified 165. This lack of sensitivity limits the dynamic range of mass spectrometers as well as the identification of low-
abundant proteins, especially in clinical samples, such as serum, in which the dynamic range can overpass 10 orders of 
magnitude 166. Once a peptide is correctly identified, another challenge is the identification of different isoforms of the 
protein, called proteoforms. These proteoforms are generated by posttranscriptional processing and PTMs, yielding multiple 
proteoforms from the same canonical amino acid sequence 167. Despite the development of PTM enrichment strategies, the 
identification of modified peptides arises more complications due to their lower abundance, lower ionization and 
fragmentation efficiency, inaccurate mass determination, confusion with the assignment of residue substitutions, and 
uncertainty in the PTM site assignment 168,169. Lastly, the high cost of MS instrumentation as well as the level of expertise 
required to perform MS-proteomics hinders its wider usage. 

1.3.4. Antibody-based technologies to characterize immune responses in cancer 

MS-based proteomics is widely used in discovery proteomics while antibody-based approaches are the most widely 
chosen for targeted proteomics, although the number of detected proteins is limited. One of the main challenges in cancer 
immunology is to find novel biomarkers to guide the choice of therapeutic strategies to maximize patient benefit. Predictive 
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biomarkers for immunotherapy require a more holistic approach with panels of biomarkers to identify the underlying 
biology and complexity of the tumor immune response 170. Recently developed antibody-based detection techniques can 
detect from tens to hundreds of proteins simultaneously, being a powerful tool to identify these panels of biomarkers. 

Multiplex immunoassays utilize antibodies as anchors that are immobilized on a solid surface or the surface of beads. 
In both, the protein of interest is bound to the specific antibody. The technology enables simultaneous detection and 
quantitation of tens of proteins. It is a powerful tool, especially for the detection of secreted proteins, such as cytokines and 
growth factors from a limited amount of biological and clinical materials. For example, this technique was applied to study 
the correlation between 59 serum-derived proteins and response to immunotherapy in gastrointestinal cancers. As a result, 
protein signatures characterized by higher levels of IC molecules, namely PD-L1, CD28, immunoglobulin and mucin domain 
3 (TIM-3), LAG-3, and CTLA4, correlated with better prognosis and higher response, being a promising panel of predictive 
biomarkers 171. In addition to detecting proteins from serum or plasma samples, recently, this technique has been applied to 
characterize inflammation-involved proteins in CRC tumors and matched normal tissues, providing a panel of 32 biomarkers 
differentially expressed in CRC tumors 172. 

Another antibody-based technology, Proximity Extension Assay (PEA) further extends the number of detected proteins 
from tens to hundreds and even thousands. The technology is based on target-specific antibodies conjugated with unique 
complementary DŃA. The antibody pairs targeting one protein bind to the target and a barcoded DŃA duplex is formed, 
which is amplified by qPCR or next-generation sequencing (ŃGS), allowing quantification of up to 3072 proteins 173,174. In a 
recent study, the oncology panel of PEA with 92 cancer-related proteins was utilized to identify potential circulating tumor 
biomarkers for meningioma. The pathway analysis revealed upregulation of immunomodulatory proteins such as CD69, C-
C motif chemokine 24 (CCL24), IL24, CCL9, and B-cell activating factor (BAFF) 175. In another study, the PEA immune-
oncology panel was applied to study the serum/plasma proteomic profiles of pancreatic neuroendocrine neoplasm patients. 
Many well-known immune regulators, such as CCL3, IL7, IL10, CCL20, were significantly elevated in patients compared to 
healthy controls, whereas FAS ligand (FASLG) was downregulated 176. The PEA technology has shown a promising potential 
to detect chemokine variability within metastatic melanoma patients subjected to anti-PD1 therapy 177. Likewise, it has also 
been used to assess the immune profile of chronic lymphocytic leukemia patients undergoing different treatments. 178. PEA 
analysis of 29 CRC tumors using the immune-oncology panel resulted in only 9 tumors clustered together in unsupervised 
hierarchical clustering, which revealed the intra-tumor TME heterogeneity 179. PEA technology possesses a validated 
specificity and sensitivity (sub-pg/ml) which allows multiplexed protein detection, consuming a minimal amount of sample. 
Further progress will have a powerful impact on the discovery of new diagnostic, predictive, prognostic, and monitoring 
biomarkers as well as on the understanding of the proteome of cancer patients 180. 

Moreover, other antibody-based proteomics techniques, such as Reverse Phase Protein Arrays (RPPA) 181 and chip 
array cDŃA-based Nucleic Acid Programmable Protein Array (NAPPA) 182 have been applied in cancer immunology 
research. RPPA has been used to correlate the tumor heterogeneity and immune response in melanoma patients 183, while 
ŃAPPA to analyze tumor autoantibodies in CRC patients 184. However, antibody-based approaches are limited by the 
availability and the specificity of antibodies that implies cross-reactivity. Another disadvantage is the variability between 
batches, especially when the antibody is produced in a new population of antibody-producing animals 185. Most importantly, 
these approaches only detect limited numbers of preselected proteins. 

1.3.5. Emerging single-cell proteomics applied to characterize the immune TME 

The interplay between cancer cells and their microenvironment plays an important role in many cancer-related 
biological processes, including progression, metastasis, drug resistance as well as immune response. These complex cellular 
interactions of the TME and cancer cells are driven by cell heterogeneity 186,187. Therefore, to develop more effective immune 
therapies, it is fundamental to understand the interaction between immune and cancer cells. Single-cell protein 
measurements rather than a conventional bulk analysis can provide more precise information on this heterogeneity. This 
section reviews the different single-cell proteomics strategies applied or with potential application in cancer immunity and 
immune cell characterization. The following section includes a short description of antibody-based approaches, MS-based 
approaches, and multi-omics strategies applied to cancer immunity at the single-cell level. 

1.3.5.1. Antibody-based approaches 

For the past 30 years, FC has become the ‘gold standard’ in marker analysis at the single-cell level. Despite its popularity, 
this method is limited to a low number of markers for simultaneous analysis due to overlapping fluorescence spectra 188,189. 
A recently developed modification of traditional FC, full spectrum flow cytometry (FSFC) overcomes the issue of 
overlapping fluorescence spectra of fluorophore-conjugated antibodies, as the detection and measurement include an entire 
fluorescence spectrum. This enables the simultaneous detection of up to 64 proteins 190. This technique has been applied to 
characterize specific cells populations within the TME. For instance, FSFC with over 30 markers found a tumor favorable 
environment formation caused by arginine-metabolizing myeloid cells co-localized with CD4+ T cells of unconventional 
phenotype in neuroblastoma mice models 191. FSFC was applied to characterize the immune cells populations in syngeneic 
melanoma, breast, ovarian, and CRC cancer models with the focus on Tim-3 as a focal molecule 192. Comparable higher 
cytolytic activity of Tim-3+PD1+CD8+ TILs lead researchers to conduct the validation of combined treatment of Tim-3/PD-
1 mAbs with indication of an enhanced anti-tumor effect 192. 
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By the combination of features of FC and MS, MC (CyTOF) has been developed to overcome the limitations of 
simultaneous analysis of up to 100 proteins at the single-cell level. In this method, cells are stained with metal isotope-tagged 
antibodies and separated in a mass cytometer, followed by TOF analysis of isotopes mass ratio in the analyzed samples. MC 
has been successfully applied in the study of the immune signature and immune response in cancer and exhibits potential 
in the discovery of novel cell populations in different types of cancer 193–201. . For example, MC and RŃA-seq analysis of tumor 
and peripheral blood mononuclear cells (PBMC) of CRC patients revealed that exhausted T cells are induced and recruited 
by the TME at all stages of the tumor development, demonstrating the link between immunosuppressive TME and the lack 
of immunotherapy response 193 This study demonstrated the superiority of MC analysis of TME over RŃA-seq to characterize 
the single-cell proteome state. Interestingly, another CyTOF study identified a novel specific population of effector Tregs with 
protective function in CRC tumors 194. In glioblastoma (GBM), MC provided data confirming the inter- and intra-tumor 
heterogeneity of glioma-associated macrophages (GAM). Moreover, the proportion of GAMs was decreased and exhausted T 
cells and Tregs were increased in recurrent tumors, contributing to an immunosuppressive environment 195.In xenografts 
GBM models, MC was utilized as a comparative tool of immune landscape between tumor-silent and tumor-active models 
revealing distinct differences in the cells profiles 196. Additionally, using cell barcoding in MC enables sample multiplexing 
which is a very useful option when dealing with valuable clinical samples and low amounts of murine tissue samples. 
Recently, MC has been successfully applied in high-throughput clinical analysis, where multiple samples have been analyzed 
with more than 35+ isotope tags 197. 

Further advances in antibody-based proteomics utilize the combination of already established antibodies properties and 
application with microchips or microfluidics to perform proteomic analysis in isolated single cells. Single-cell barcode 
chips (SCBC) separates single cells in microchambers and secreted or intracellular proteins are captured on an antibody 
array. Then, captured proteins undergo the staining and quantification with the corresponding biotinylated antibodies and 
fluorescent streptavidin 202. Advances in this technology led to the development of a commercial platform that quantifies a 
panel of 40 key secreted proteins from a single, viable cell 203. Among other applications, this platform was used to study the 
heterogeneity of CD8+ TILs in metastatic melanoma patients 204. 

Multiplexed in situ targeting (MIST) technology uses microbeads hybridized with antibodies conjugated to single-
stranded DŃA. Once the secreted target proteins are captured, an ELISA assay with the usage of a second, complementary 
DŃA-conjugated antibody is performed 205. Both technologies, SCBC and MIST, have to compromise the multiplex capacity 
and detection sensitivity, i.e. increasing the number of different antibodies can increase the multiplexing capacity but, in 
parallel, decrease the amounts of particular antibodies used, decreasing the sensitivity 206. Antibody barcoding with 
cleavable DNA (ABCD) is the next technology that improves multiplexing capacity by utilizing antibodies linked to a unique 
DŃA barcode via a photocleavable linker. DŃA barcodes are released after incubation by UV exposition and are quantified 
by fluorescence hybridization 207. Moreover, ABCD allows simultaneous analysis of hundreds of proteins from cancer cells 
and it was applied to characterize lung cancer cells from minimally invasive fine-needle aspirates 208. 

TME heterogeneity does not only rely on the different cell types but also their spatial distribution and cell-cell 
interactions 209. Whereas previous techniques analyze proteins in isolated single cells, the next antibody-based strategies 
are focused on comprehensive protein profiling in their natural spatial contexts. Multiplex immunofluorescence (mIF) is 
based on cycles of antibody staining, imaging, and antibody removal in tissue slides. This method allows the simultaneous 
identification of several immune markers in the same cell providing data about both the expression and location of target 
proteins (Figure 1.6a). A combination of tissue microarrays with mIF has been optimized (e.g., for TME immune profiling) 
210. Gerdes et al. 108 applied mIF to analyze 61 proteins in CRC, revealing extensive tumor heterogeneity. Recently, mIF has 
been used to unveil the immune heterogeneity within the TME of melanoma and breast cancer ALŃs 141,144. 

 Since the specific intracellular localization of the proteins is essential to performing their biological function(s), 
whilst localization abnormality may severely disrupt biological processes causing disease, characterization of protein 
expression, as well as its localization in a high resolution, is needed. Single-cell spatial proteomics aims at solving this 
problem in a comprehensive manner (reviewed in 211 and 212). An mIF technique called Multi-Epitope Ligand Cartography 
(MELC) uses an automated microscopic robot that allows multiplexed protein characterization at subcellular level. In a 
pioneering work, MELC was applied to identify changes in key immune function-related proteins in CRC tissue at subcellular 
level 213. In this study, 1,930 clusters of proteins distinguished CRC from healthy tissue, and CRC tissue was enriched in T 
cells with altered T cell adhesion and ŃK cells with high nuclear factor-κB (ŃF-κB) expression. Later, Bhattacharya et al. 214 
used Toponome Imaging System, a similar mIF strategy, to compare CRC with a normal colon. 5,708 clusters of proteins 
that are specific to colon cancer were identified, showing that CRC has a unique higher-order toponomy signature. 

Since the application of mIF techniques carries a risk of damaging the epitopes’ integrity, oligonucleotide conjugated 
antibodies alternatives have been explored 215–217. CO-Detection by indEXing (CODEX) iteratively visualizes targets 
through in situ polymerization-based indexing procedure with oligonucleotide-conjugated barcodes and dŃTPs analogs 
tethered to fluorophores (Figure 1.6b) 218. CODEX has been applied to study the immune TME of CRC with 56 markers, 
showing the importance of the spatial distribution and cell neighborhoods in CRC 219. Despite the recent advances in 
multiplexed analysis, it was found that oligonucleotides negatively affect the specificity and the binding affinity of antibodies. 
To avoid this interference, other alternatives are used e.g., removable antibodies with fluorophores linked by an azido group 
220. 



16 
 

 
Figure 1.6. Schematic representation of single-cell spatial proteomics approaches. (a) Multiplex immunofluorescence (mIF), (b) CO-
Detection by indEXing (CODEX), (c) Imaging Mass Cytometry (IMC) and Multiplexed Ion Beam Imaging (MIBI). 
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In the context of cancer immunology, imaging mass cytometry (IMC) and multiplexed ion beam imaging (MIBI) are 
powerful tools to assess the complexity of the TME and networks of cell-cell interactions in their spatial context within the 
tissue. IMC is a technology that combines CyTOF (MC) and imaging to analyze proteins in situ (Figure 1.6c). First, the tissue 
slide is stained with a panel of metal conjugated antibodies and then the stained tissue is converted to a stream of particles 
pixel-to-pixel by a laser. Ńext, the mass spectrometer determines and quantifies the metal isotopes linked to the antibodies 
in each particle and, finally, a computational algorithm combines the MS data of each pixel with its coordination information 
to generate a two-dimensional image 221. IMC not only provides information on single-cell proteomics but also on the 
localization of the particular protein in the tissue and construct the cellular interaction within the TME. This methodology 
gives additional data potentially relevant in the context of prognosis or treatment. IMC analysis with 35 biomarkers of 
patients’ breast tumors samples, together with available survival data, yielded high-dimensional images providing 
information on the complexity of organization of tumor and stromal cells, their location within the tissue, and distinct 
phenotypes of tumor cells. This study led to the proposal of novel breast cancer subgroups closely related to the particular 
patient’s prognosis 222. IMC was also used to explore the TME of different cancer types including Hodgkin lymphoma, and 
CRC, in which tertiary lymphoid structures in CRC were found to have abundant forkhead box P3 (FoxP3)+ Treg expression, 
demonstrating its potential for immune profiling in tumors 223.  

The second technology, MIBI is a variation of IMC which operates an ion beam to release metal ion reporters, therefore 
increasing its multiplexing capacity to more than 100 targets at once 224. An interesting application of MIBI is single-cell 
metabolic regulome profiling, which enables to study the composition of the metabolic regulome in combination with 
phenotypic identity with more than 110 antibodies against metabolite transporters, metabolic enzymes, or regulatory 
modifications. The study revealed the metabolic heterogeneity and spatial organization of CD8+ T cells in CRC, including 
subsets expressing the T cell exhaustion-associated molecules CD39 and PD-1, indicating their exclusion from the tumor-
immune boundary 225. Undeniably, IMC and MIBI are superior methods to fluorescence-based technologies because they 
detect simultaneously targeted proteins with a higher dynamic range, avoiding staining/stripping cycles that can 
compromise epitope integrity 226. However, their disadvantage is the availability of the number of antibodies conjugated 
with metal isotopes suitable for FFPE and fresh frozen tissue staining 227. In summary, the bottleneck of single-cell 
measurements with antibodies is the limit of sensitivity, which stems from the molecular shot noise, limiting accurate 
quantification to the low attomolar (aM) range, as well as the quality of the antibody 228. 

1.3.5.2. Single-cell MS-based approaches 

Unbiased single-cell MS-based proteomics approaches are currently in development, being a promising alternative that 
can overcome the limitation of antibody-based approaches, potentially leading to an increased number of detected proteins 
229. However, single-cell MS analysis must overcome additional challenges apart from the abovementioned for bulk MS 
proteomics. Proteins cannot be amplified as nucleic acids. Thus, one of the major challenges is the delivery of peptides to the 
mass spectrometer taking into account the low protein content of a single cell. Single-cell sample preparation requires 
miniaturization and automation to reduce protein losses and increases their concentration 230. Single cells are separated by 
FACS or other alternative techniques and subsequently, protein extraction and digestion are performed in reduced volumes 
(1μl/cell or lower). Different strategies of sample preparation have been successfully developed such as nanodroplet 
processing in one pot for trace samples (nanoPOTS) 231, oILair droplets 232, or Minimal ProteOmic sample Preparation 
(mPOP) based on freeze-heat cycles 233. Moreover, peptide separation in the LC column and its corresponding ESI must be 
miniaturized with flow rates at low-nanoliter-per-minute or even picoliter-per-minute range. Therefore, the inner diameter 
of nanoLC columns is reduced from 75 µm to 30 µm which in consequence improves single-cell proteome coverage 234. 

Importantly, single-cell MS analysis needs an increase in peptide sequence identification as well as its multiplexing 
capacity to analyze the proteome from thousands of cells at an affordable cost 229. A great advance has recently been achieved 
with an approach called Single Cell ProtEomics by mass spectrometry (SCoPE-MS) 235. SCoPE-MS prepares the sample 
by mPOP and adds an isobarically labeled carrier (e.g., the proteome of 100 cells) with tandem mass tags 236. The usage of a 
proteomic carrier mitigates sample losses, facilitates peptide sequence identification, and increases the multiplexing 
capacity with a limit of 12 single-cell proteomes in one run due to the limited tandem mass tags available. With such 
technological development, SCoPE-MS found its application in heterogeneity studies. SCoPE-MS quantified 3,042 proteins 
in 1,490 single monocytes and macrophages, suggesting that heterogeneity of macrophages may emerge without the 
participation of polarizing cytokines 237. Moreover, SCoPE-MS quantified 1,500 proteins from 152 cells from three acute 
myeloid leukemia (AML) cell lines, revealing functionally distinct differences between the three cell clusters 238,239. Moreover, 
the combination of nanoPOTS and SCoPE-MS quantified around 1,000 proteins per cell of 3,000 FACS-sorted cells from an 
AML culture model. It allowed resolving AML heterogeneity at a single-cell level along different hierarchical stages of 
differentiation 240. 

Further improvements will be achieved through innovations in sample preparation and peptide separation, hardware 
advances of mass spectrometers as well as innovative acquisition and interpretation methods. These improvements will 
facilitate increased coverage of single-cell proteomes as well as the sensitivity and confidence of peptide sequence 
identification, revolutionizing cancer immunology 241. 

1.3.6.5. Single-cell multi-omics strategies 

For precision oncology, to deeply and comprehensively understand the complexity of the TME, in addition to proteomics, 
an integration of multi-omics data at the individual cell level with the molecular landscape of each cell is needed 242,243. 
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Proteogenomics approaches combine bulk MS-based proteomics with genomics and transcriptomics. This strategy has been 
applied to several cancer types, providing novel insights into somatic mutation consequences at the protein level as well as 
neoantigens discovery for immunotherapy 244–247. However, the genomic and proteomic data integration at the single-cell 
level is currently in development. Recently, a pioneering study designed DAb-seq which allows analysis of 49 DŃA targets 
and 23 protein markers by the combination of DŃA barcodes conjugated to antibodies and multiplex PCR. Although this 
technology requires an increase in its multiplexing capacity, it demonstrated the heterogeneous interactions of somatic 
mutations and protein expression in AML single cells 248. 

On the other hand, there are some techniques designed to link mRŃA and antibody based protein analysis in single cells 
approaches. Proximity Ligation Assay for RNA (PLAYR) is a method that uses FC/MC for simultaneous analysis of target 
proteins stained with antibodies and RŃA. PLAYR probe pairs hybridize their targets and then the insert and backbone are 
hybridized and ligated to the probes. After rolling circle amplification, labeled oligonucleotides bind the insert regions for 
detection and quantification 249. Recently, this method has been used to demonstrate intra-clonal heterogeneity in chronic 
lymphocytic leukemia cells 250. Cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) and its sister 
technology RNA expression and protein sequencing (REAP-seq) combine DŃA-conjugated antibodies with scRŃA-seq 
251,252. The difference is that CITE-seq uses biotinylated antibodies whereas REAP-seq uses antibodies covalently bonded to 
aminated DŃA sequences. These methods integrate cellular surface protein and transcriptome measurements into single-
cell readout. CITE-seq provides a more detailed characterization of cellular phenotypes compared to scRŃA-seq alone and 
allows simultaneous protein expression and transcriptome profiling of thousands of single cells (Figure 1.7). CITE-seq may 
also show quantitative differences in marker expression between subsets e.g., expression difference of CD8a between ŃK 
and T cells 252. A CITE-seq panel of 157 antibodies was applied to immunophenotype breast cancer patients. 18 clusters of 
T cells and innate lymphoid cells (ILCs) were found with different proportions among clinical subtypes. Interestingly, IC 
molecules were also differentially expressed among breast cancer subtypes. These findings may lead to personalized 
immunotherapy strategies for each subtype 253. Moreover, it was found that CITE-seq can be combined with single-cell 
sequencing assay for transposase-accessible chromatin (scATAC-seq) and used to study the RŃA expression, surface 
proteins, and chromatin accessibility at the single-cell level. Granja et al. 254 applied such a strategy to find distinct and shared 
molecular mechanisms of leukemia. Among the challenges for both technologies (CITE-seq and REAP-seq), the efficiency of 
cell captures must be increased, the system requires total automation, and the multiplex detection must be extended to 
intracellular proteins which is currently limited to a reduced number of proteins 255,256. Recently, SUrface-protein Glycan 
And RNA-seq (SUGAR-seq) has been designed to enable the detection and analysis of Ń-linked glycosylation, extracellular 
epitopes, and the transcriptome at the single-cell level. SUGAR-seq is an extension of CITE-seq in which glycans are captured 
with a biotinylated lectin and subsequently detected using an anti-biotin mAb conjugated to a DŃA-barcode. Integrated 
SUGAR-seq and glycoproteome analysis identified TILs with unique Ń-glycan profiles as cellular T cell subsets with the 
altered epigenetic and functional state in CRC and melanoma mice models 257. 

 
Figure 1.7. Schematic representation of CITE-seq and REAP-seq. Antibody-barcoded labeled cells are mixed in a microfluidic system in 
which each droplet contains a cell, beads with the PCR adapters with the corresponding cell barcodes, and lysis buffer. After cell lysis within 
the droplet, mRŃA and DŃA barcodes from antibodies are hybridized with PCR adapters. Subsequent retrotranscription generates cDŃAs 
and droplets are disrupted. Upon disruption, the respective cDŃAs for mRŃAs and proteins are separated by size. These synthesized 
libraries are sequenced, providing the single-cell expression profiles of mRŃA and targeted proteins. 

Zhang et al. 258 combined scRŃA-seq and mIF to study the immune TME of CRC patients. They found that TILs showed 
an exhausted phenotype compared to T cells originating from normal tissue and peripheral blood. Moreover, they identified 
a population of Th1-like cells that were enriched in microsatellite instability (MSI) CRC, providing a possible explanation for 
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MSI patients’ good response to anti-PD-1 immunotherapy. Finally, de Vries et al. 259 combined MC with 36 markers, FC, 
scRŃA-seq, and mIF to analyze T cells from CRC, matched associated lymph nodes, healthy mucosa, and peripheral blood. 
Different phenotypes of CD8+/γδ T cell and CD4+ memory T cells were observed in each examined tissue. Interestingly, an 
innate lymphoid cell (ILC) population was enriched in CRC tissues with high expression of cytotoxic molecules. Additionally, 
this ILC population correlated with the presence of tumor-resident cytotoxic, helper, and γδ T cells with similar activated 
profiles. This study not only sheds some light on the complexity of lymphocytes composition dependent on the sample type 
but also demonstrates that multi-omics data integration provides much more data and in-depth analysis, which otherwise 
would not be obtained. 

1.3.6. Conclusions and future perspectives 

Despite the great advances in cancer immunology and the development of immunotherapy, the patients’ response rate 
remains a clinical challenge. Understanding the complexity of TME and immunosuppression mechanisms may lead to design 
of more effective cancer immunotherapies. Proteomics is a powerful approach to accelerate the studies on immune 
responses in cancer. MS-based proteomics can uncover novel insights into molecular mechanisms and potential therapeutic 
targets, while the application of antibody-based proteomics approaches does not require specialized expertise as in MS and 
is widely applied as a tool to characterize selected proteins and discover new clinical biomarkers. However, both approaches 
possess limitations and technical challenges that complicate the characterization of the whole proteome of biological 
systems, especially to differentiate between proteoforms. 

Emerging single-cell proteomics approaches will revolutionize our understanding of the complex cellular networks 
within the TME and interactions between cancer and immune cells. Several technologies have been recently developed with 
the potential for comprehensive proteomic characterization that facilitates the deep profiling of immune responses in cancer 
at the single-cell level. Ńovel technical solutions will provide higher sensitivity and higher resolution at the subcellular and 
molecular level 260–262. Importantly, a new era in proteomics was born with single-molecule protein sequencing based on 
fluorescence-mediated in situ protein identification 263,264 as well as nanopores 265,266. Further technical development of 
these next-generation proteomics approaches will ideally enable the whole proteome characterization and unveil the 
distribution of proteoforms at the single-cell level. 

In summary, together with the technological advancements in single-cell analysis, progress in a holistic system of multi-
omics data analysis and discovery is needed. To date, it was found that a combination of different ‘omics’ data with single-
cell proteomics, may provide information on cancer origin, progression, and prognosis, which could remain undiscovered if 
were analyzed separately. It is well-recognized that a comprehensive approach to TME composition is crucial in personalized 
therapy and efficient treatment. In this review, we have discussed examples of immune heterogeneity studies of TME in 
cancer, focusing on both MS-based bulk/antibody-based and single-cell analysis. Moreover, we reviewed emerging single-
cell proteomic analysis methods with examples of the combination of multi-omics studies, which we believe become widely 
applied in cancer research in the future. 

1.4. LC-MS/MS-based label-free shotgun proteomics analysis 

As previously presented in section 1.2.3, there are multiple antibody and MS-based proteomics technologies. Within MS-
based technologies, this section will focus on the technical aspects including MS instrumentation and label-free quantitative 
strategies from shotgun proteomics analysis by LC-MS/MS applied in this thesis. In biomedical research, sample preparation 
of proteins extracted from different sources such as cells, tissues, or biofluids, resulting in digested peptides is followed by 
LC-MS/MS analysis. 

1.4.1. LC-MS/MS 

Several separation methods of peptides are applied in proteomics analysis including LC and capillary electrophoresis. 
Peptide mixtures are injected into the LC system in which peptides are separated by their molecular properties. The most 
widely used is reversed-phase liquid chromatography (RPLC) in which peptide mixtures are separated based on their 
hydrophobicity in C18 columns as stationary phase by increasing gradients of acetonitrile in acidic pH as mobile phase at 
micro/nanoflow. In this way, peptides are separated to minimize their co-elution and directly injected into the mass 
spectrometer 267. 

Mass spectrometry analysis is based on the measurement of mass-to-charge ratios (m/z) of ions in gas phase. Mass 
spectrometers are composed of three main sections, ion source, mass analyzer, and detector 268. In LC-MS/MS, electrospray 
ionization (ESI) is the most common ion source in which high voltage produces dispersion of charge droplets that decrease 
their size by evaporation until gas-phase ions are ejected and transferred to the mass spectrometer 269.Several types of mass 
analyzers are available and mainly separate ions according to their m/z ratios by different techniques. These separated ions 
are transferred to the detector, such as electron multipliers, that capture and amplify the ion current signals. In tandem mass 
spectrometry (MS/MS), the precursor ions introduced in the mass spectrometer are selected and consecutively fragmented 
into product ions that are analyzed 270. Two main hybrid high-resolution accurate-mass mass spectrometers, quadrupole-
time of flight (Q-TOF) and quadrupole-orbitrap (Q-OT) are mainly used in untargeted LC-MS/MS proteomics, that were 
applied in this thesis, although there are other combinations and mass spectrometers 271. In both instruments, quadrupoles 
consist of four parallel cylindrical rods of hyperbolic or cylindrical cross-section in which precursor ions are selected 
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according to their m/z ratio through the central axis of quadrupoles. Selected ions achieve a stable trajectory through this 
axis while other ions are neutralized by hitting the rods by application of sets of direct current and radiofrequency within 
parallel rods while adjacent rods have an opposite radiofrequency 272. 

In Q-TOF, the first quadrupole provides improved quality of precursor ions by collisional damping, the second selects 
ions, and the third quadrupole performs collision-induced dissociation (CID) with neutral gases to fragment precursor ions. 
Resulting product ions and remaining precursor ions are transferredto a reflectron TOF mass analyzer in which ions are 
separated by their velocity along TOF and kinetic energy by the ion mirror allowing the determination of both precursor and 
fragment ions required to provide peptide amino acid sequences 273. In Q-OT, ESI-derived precursor ions are selected in a 
quadrupole after collisional damping and transferred to a C-trap that is connected to a High Collision Dissociation (HCD) cell 
and the orbitrap mass analyzer. Selected ions are fragmented in the HCD cell and product ions are sent to the Orbitrap by 
the C-trap. In peptide fragmentation by CID and HCD, precursor peptide ions are fragmented in different amide bonds, 
resulting mainly in y- (C-terminal charged) and b-ions (Ń-terminal charged) that allow to determine the peptide sequence 
(next section) 268. Orbitrap analyzer is an ion trapping based on electrostatic fields applied through its outer and inner 
spindle shape electrodes 274. Then ions are detected and converted by Fourier transformation into the frequency domain 
and then mass spectra 275. Another mass spectrometer is the tribrid orbitrap that combines the Q-OT structure with an 
additional linear ion trap for parallelization of mass spectra acquisition, increasing scanning rates of MS1 spectra from 
precursor ions and MS2 spectra from product ions 276. Last technological and software acquisition advances resulted in 
higher resolving power with a full width at half-maximum (FWHM) of 500000 at 200 m/z, a measurement of peak resolution, 
and high mass accuracy (<1 ppm) 277.  

1.4.2. Data Dependent Acquisition (DDA) and Data Independent Acquisition (DIA) 

Untargeted LC-MS/MS proteomics analysis is divided into two main quantification strategies: Data Dependent 
Acquisition (DDA) and Data Independent Acquisition (DIA). Meanwhile, targeted proteomic analysis includes 
selective/multiple-reaction monitoring (SRM/MRM) in Q-TOF and parallel-reaction monitoring (PRM) in Q-OT with high 
reproducibility, selectivity, and sensitivity for limited numbers of peptides 278. In this thesis, DDA and DIA label-free 
strategies were applied, however, there are also labeling quantification strategies based on stable isotope–enriched labels 
such as Tandem Mass Tags (TMT) and isobaric tags for relative and absolute quantification (iTRAQ) or metabolic labeling 
such as Stable isotope labeling using amino acids in cell culture (SILAC) to improve quantification reproducibility and 
increase multiplexing capabilities 279. 

DDA consists of iterative acquisition cycles of MS1 and MS2 spectra from selected peptides in real time for each MS 
survey, normally the top Ń most abundant ions, together with dynamic exclusion of already selected precursor ions for a 
certain time. Selected peptides for fragmentation are filtered in a narrow m/z window to record the spectrum from 
individual peptides instead of co-eluted peptides. This strategy results in large amounts of high-quality MS2 spectra allowing 
to the identification of thousands of peptides in a single run. However, the selection of precursor ions is stochastic and 
detection of low precursor ions do not reach the mass spectrometer limit of detection 280. In general, DDA data is analyzed 
by spectrum-centric analysis using sequence database searching software such as MaxQuant 281 or SEQUEST 282 in which 
algorithms evaluate matches between in silico MS2 spectra of the theoretically peptide fragments from a proteome sequence 
database and each recorded spectrum that generates Peptide-Spectrum Matches (PSMs). Database search is including 
artificial decoy peptide sequences that are followed by control of False Discovery Rate (FDR) calculated as the ratio between 
decoy matches and reported target matches 283. Other strategies include de novo sequencing that predicts peptide identity 
without database support and MS library searches in which recorded spectra are matched to previously recorded 
experimental spectra as well as combinations of them with database search 284. 

DIA strategy, also called Sequential Windowed acquisition of All THeoretical fragment ion Mass Spectra (SWATH-MS) in 
Q-TOF analysis, combines the high-throughput from DDA and robust quantification of targeted approaches with a different 
acquisition scheme. In iterative cycles, precursor ions are separated in successive m/z windows of 5-25 m/z ranges in which 
all the co-isolated peptide ions are fragmented, resulting in complex MS2 spectra 278. Consequently, all the peptides above 
the detection threshold are theoretically identifiable but MS2 spectra interpretation is complicated. Peptide identification is 
based on peptide-centric analysis in which bona fide MS2 spectral libraries containing m/z and intensities of fragment ions 
and LC Retention Times (RT) for each peptide are used to extract fragment ion traces in target MS2 data and assess their 
coelution quality to infer peptide identification 284. Similarly to spectral-centric analysis, target-decoy FDR correction is 
performed by scoring the chromatographic peaks of identified fragmented peptides. Primarily, MS2 spectral libraries are 
built by extensive pre-fractionation of pooled queried samples in DDA to guarantee the library quality, which is essential for 
DIA 284. Recent advances in DIA informatics analysis allow for “library-free” approaches in which in silico libraries are 
generated from proteome databases by deep learning approaches such as DIA-ŃŃ as well as DIA MS2 spectral library 
creation and consequently hybrid DIA+DDA libraries such as FragPipe to improve protein identification and quantification 
285–287. 
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CHAPTER 2. Aims of the thesis 
Inflammation is the most relevant contributor to several diseases. Chronic inflammatory diseases, and cancer, are 

considered the most significant causes of death and their prevalence is increasing. Recently, there were great advances in 
treatment and diagnosis such as cancer immunotherapies that are a milestone in cancer treatment However, a majority of 
patients exhibit low responses due to the influence of other non-targeted inflammatory/immunosuppressive mechanisms. 
Therefore, deeper understanding of pathogenic molecular mechanisms underlying the immune responses is urgently 
needed. An imbalance between regulatory and inflammatory CD4+ T-cell populations and other immune cells plays an 
essential role in chronic inflammatory diseases and cancer 288. Although several studies have applied transcriptomics with 
remarkable contributions to biomedical research, poor levels of concordance between changes in protein abundance and 
mRŃA expression have been reported 99. Proteins are well-known critical cell effectors and proteomics is revolutionizing 
molecular biology and clinical research with robust protein expression profiling considering post-translational regulation, 
interactions, and subcellular localization 289. This thesis aims to identify and characterize protein changes associated with 
chronic inflammation and cancer contexts by proteomics approaches, especially focused on immune-related proteins related 
to CD4+ T cell subsets and other immune cells. We speculate that proteomic characterization will facilitate biomarkers 
discovery as well as the identification of novel regulators of T-cell-driven immune responses. These novel regulators may be 
potential immunotherapy targets for chronic inflammatory diseases and cancer treatment, diagnosis, and prognosis. 

SARS-CoV-2 infection causes an exacerbated immune response and acute inflammation with aggravating effects in 
COVID-19 pathogenesis. Patients with chronic inflammatory diseases have a higher risk of developing severe symptoms after 
SARS-CoV-2 infection and increased mortality. Despite the great advances in SARS-CoV-2 immunopathogenesis since the 
COVID-19 outbreak, further understanding of SARS-CoV-2 immune responses and biomarkers are needed. In collaboration 
with Dr. Chen team from University of Oulu, I had the opportunity to take part in a SARS-CoV-2 project that resulted in two 
publications (Chapters 3 and 4). The aims of this first part of the thesis are:  

1. Set up and optimization of sample preparation protocols for LC-MS/MS proteomics analysis and bioinformatics 
analysis of LC-MS/MS and PEA data. 

2. Plasma proteomics characterization of COVID-19 patients with/without pre-existing chronic inflammatory diseases 
by two orthogonal technologies (LC-MS/MS and PEA) 

3. Determine plasma protein changes associated with COVID-19 infection and protein signatures linked to COVID-19 
response in patients with comorbidities 

4. Characterize plasma protein changes related to time of infection and generation of SARS-CoV-2-specific antibodies 
Immune-related proteins derived from CD4+ T cells and other immune cells are essential players in cancer-associated 

inflammation and in CRC tumorigenesis, progression, and therapy resistance.Once sample preparation and bioinformatic 
analysis were established in the COVID-19 study, the second and main part of this thesis aims to: 

1. Plasma proteomics characterization of CRC patients and healthy controls by LC-MS/MS and PEA (Chapter 5 and 6) 
2. Determine plasma protein changes caused by cancer-associated inflammation and cancer progression 
3. Validation of potential biomarkers in larger CRC cohorts 
4. Proteomics characterization of CRC and normal-matched tissue enriched in CD4+ T cell infiltration and other 

immune cells (Chapter 7)  
5. Determine protein changes linked to CRC progression and infiltration 
6. Validate potential immune regulators in public datasets 

 
                          Figure 2.1. General overview of the second main part of the thesis. 
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CHAPTER 3. Plasma Proteomics Elucidated a Protein Signature in 
COVID-19 Patients with Comorbidities and Early-Diagnosis Biomarkers 

SARS-CoV-2 infection can produce severe symptoms characterized by systemic inflammation and an exacerbated 
immune response. Moreover, COVID-19 patients with pre-existing chronic inflammatory diseases have a higher risk of 
developing pathological complications. In this chapter, untargeted LC-MS/MS proteomics analysis was applied to plasma 
samples from SARS-CoV-2 infected patients with and without pre-existing comorbidities together with their age-and-sex 
matched HCs and disease controls to characterize the protein changes caused by SARS-CoV-2 infection. This study resulted 
in an article published in Biomedicinesin collaboration with the University of Oulu and the IFB laboratory of mass 
spectrometry and is presented with minor modifications: 

Urbiola-Salvador V, Lima de Souza S, Macur K, Czaplewska P, Chen Z. Plasma Proteomics Elucidated a Protein 
Signature in COVID-19 Patients with Comorbidities and Early-Diagnosis Biomarkers. Biomedicines. 12, 840 (2024). 

3.1. Introduction 

Since the COVID-19 outbreak, extensive research efforts have improved our understanding of severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) infection pathogenesis as well as diagnostics, treatment and prevention with the 
effective design of vaccines 290. The pathophysiology of SARS-CoV-2 infection is closely interconnected with the immune 
response resulting in diverse clinical presentations from asymptomatic/mild to severe patients with high mortality rates. In 
fact, SARS-CoV-2-induced tissue damage recruits immune cells causing a local and systemic inflammatory response, also 
called cytokine storm, which in severe cases lead to pneumonia, microthrombi deposition, systemic symptoms and multi-
organ failure in fatal cases .With the virus evolution and new emerging variants, continuous research must characterize the 
interaction between SARS-CoV-2 infection and the immune response 291.  

The heterogeneity in the COVID-19 response is caused by the clinical variability including multiple factors such as sex, 
age, and ethnicity as well as pre-existing comorbidities such as cardiovascular diseases, cancer, diabetes, and obesity among 
others with higher severity and mortality rates 45. Despite the great advances in COVID-19 research, deeper understanding 
of COVID-19 immunopathology especially in patients with pre-existing comorbidities and the determination of specific 
COVID-19 biomarkers are urgently needed 292. Importantly, proteomics approaches can provide novel insights into the 
protein changes caused by SARS-CoV-2 infection at cellular and systemic level to identify the drivers of the pathogenesis 293. 
In fact, proteomics characterization of COVID-19 patients’ plasma is a non-invasive strategy that can reflect the disease status 
and determine potential biomarkers associated with the pathophysiological mechanisms of SARS-CoV-2 infection. 

In this study, we applied tandem mass spectrometry coupled with liquid chromatography (LC-MS/MS) proteomics 
analysis to plasma samples from 28 SARS-CoV-2 infected patients with and without pre-existing comorbidities, age-and-sex-
matched healthy controls (HCs) and disease controls (DCs) from the Finnish Clinical Biobank. The main aims of this study 
was to characterize plasma protein changes associated with or without the presence of comorbidities and time of infection. 
We found a common protein signature among COVID-19 patients with comorbidities characterized by protein alterations 
involved in the coagulation and complement pathways, tissue damage and remodeling, acute-phase reaction as well as 
cholesterol metabolism among others. Moreover, novel potential diagnostic biomarkers of early SARS-CoV-2 infection were 
detected including the keratin K22E, the extracellular matrix protein ECM1, and the acute-phase response protein α-2-
antiplasmin (A2AP) among others. This study determined novel insights into the plasma protein changes caused by SARS-
CoV-2 infection that may lead to the validation of these potential biomarkers in further studies. 

3.2. Materials and Methods 

3.2.1. Study Cohort 

This retrospective study included 28 plasma samples collected from SARS-CoV-2 virus-infected patients (25% males, age 
range 19-79). Ńineteen of them had other pre-existing diseases, while the remaining nine were without comorbidities. Two 
control groups included 28 SARS-CoV-2 virus-negative healthy subjects without any diseases and the disease control group 
including 20 SARS-CoV-2 virus-negative subjects with additional diseases. The 19 SARS-CoV-2 patients with additional 
diseases were age-and-sex-matched with 19 healthy controls as well as with 20 disease controls, in the case of which the 
matching considered the major disease(s) as well. Two patients with comorbidities were age-and-sex-matched to two 
disease controls with the same clinical conditions, while for another patient, a disease control was not found. The remaining 
9 comorbidities-free SARS-CoV-2 patients were age-and-sex-matched to their corresponding 9 healthy controls (Table 3.1). 
Plasma samples and clinical information were obtained from the Finnish Clinical Biobank, Tampere. The study was 
conducted in accordance with the Declaration of Helsinki and was approved by the HUS ethics committee. All the participants 
provided informed consent. 

3.2.2. Sample Preparation for Mass Spectrometry 

Proteins were extracted from plasma samples with lysis buffer containing 1% SDS, 50 mM DTT in 100 mM Tris-HCl pH 
8.0 with protease and phosphatase inhibitors. Samples were incubated at 95 °C for 10 min and protein concentrations were 
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determined in ŃanoDrop 2000 at 280 nm. Samples were processed according to the Filter Aided Sample Preparation 
protocol 110. Briefly, 100 μg of proteins were transferred to Microcon 10 kDa filters (Merck) and were washed three times 
with 200 µl of urea buffer (8 M urea in 100 mM Tris-HCl pH 8.5) at 10000 rcf for 20 min at room temperature. Free cysteines 
were alkylated by incubation in the darkness for 20 min at room temperature with 100 µl of 55 mM iodoacetamide in urea 
buffer. Samples were centrifuged at 10000 rcf for 15 minutes followed by three washes with 100 µl of urea and two final 
washes with 100 µl of digestion buffer (50 mM Tris-HCl pH 8.5). After washing steps, proteins were digested by incubation 
at 37°C overnight with Sequencing Grade Modified Trypsin (Promega) at a trypsin:protein ratio 1:100 in 60 µl of digestion 
buffer. Peptides were eluted in a new collection tube by centrifugation and with two additional elutions with 125 and 100 µl 
of digestion buffer. Ńext, trypsin activity was quenched with a final concentration of 0.1% trifluoroacetic acid. Peptide 
concentrations were measured in Ńanodrop at 280 nm and 10 μg of peptides were desalted via the STop And Go Extraction 
(STAGE) Tips protocol 294 using Empore C18 extraction disks (3M) with elution by 60% acetonitrile/1% acetic acid solution. 
Samples were dried using SpeedVac and stored at -20°C until analysis. 

3.2.3. Mass Spectrometry Analysis 

LC-MS/MS analysis was performed in the positive ion mode using a TripleTOF 5600+ mass spectrometer equipped with 
TurboV Ion Source (SCIEX, Framingham, MA) and coupled with the EkspertMicroLC 200 Plus System (Eksigent, Redwood 
City, CA). SCIEX Analyst TF 1.8.1 software controlled the microLC-MS/MS system. Two µg of peptides were injected per 
technical replicate and the chromatographic separations were performed with a 5 µl/min flow for 60 min on a ChromXP 
C18CL column (3 μm, 120 A , 150 × 0.3 mm) placed in a column oven at 35 °C. Peptides were separated with a gradient from 
11% to 35% of acetonitrile in 0.1% formic acid. The mass spectrometer operated in data-dependent acquisition mode and 
the m/z range of 400-1200 Da was applied for the TOF MS survey scan with an accumulation time of 250 ms. A maximum of 
top 20 precursor ions with charges between +2 and +5 were selected for collision-induced dissociation (CID) fragmentation 
with rolling collection energy. Precursor ions were excluded from reselection for 5 s after two occurrences. Product ions 
spectra were acquired in the range of 100-1800 Da within an accumulation time of 50 ms. 

3.2.4. Mass Spectrometry Data Analysis 

Acquired raw files were converted with MSConvertGUI 3.0 to mzML format to use as input for protein identification and 
quantification analysis using PeaksStudio Xpro 10.6 software. Peptide sequences were searched against Homo sapiens 
UniProtKB/Swiss-Prot database (release 2022_03) for peptides with specific trypsin digestion and a maximum of 3 missed 
cleavages per peptide. Carbamidomethylation was set as fixed post-translational modification (PTM), whereas Ń-terminal 
acetylation and methionine oxidation as variable PTMs. Peptides and proteins were identified with a < 1% false discovery 
rate (FDR) and proteins were considered identified with at least 1 significant unique peptide. Label-free quantification was 
performed based on the integration of the area under the curve (AUC) of peptides with the use of label-free quantification 
feature available in PeaksStudio Xpro 10.6 software. 

3.2.5. Proteomics Data and Statistical Analysis 

Statistical analysis was performed in RStudio (version 1.3.1093) using R (version 4.0.3) 295,296. Peptide results from 
PeaksStudio software were used for data preprocessing with the “SummarizedExperiment” (version 1.28.0) and “QFeatures” 
(version 1.8.0) R packages. Peptides that were only detected twice across all samples were removed. Data preprocessing was 
performed by logarithmic transformation and quantile normalization. Peptides were aggregated in proteins by robust 
summarization 297. Quantification reproducibility among technical replicates was evaluated by Pearson correlation. 
Between-group differences in protein expression levels were analyzed by means of the general linear model regression 
approach with analysis of contrasts using the “emmeans” R package (version 1.6.2.1). First, 19 SARS-CoV 2 virus-infected 
patients with comorbidities were involved to search for differential protein expression due to virus infection and/or 
coexistent comorbidities by comparing the protein expression levels in virus-infected patients to respective healthy and 
disease control subjects. The models used in this analysis comprised the presence of comorbidities as nested confounding 
factor. While the remaining nine comorbidities-free patients were compared to their age-and-sex-matched healthy controls 
to determine protein expression changes due to the virus infection itself without additional confounders in these models. In 
the last regression modeling, all 28 SARS-CoV-2 virus-positive patients’ samples were analyzed together to search for 
differential protein expression due to infection time including the presence of comorbidities as confounding factor. False 
Discovery Rate in contrast analyses was controlled by using the Benjamini & Hochberg correction 298. Proteins were 
considered differentially expressed with an FDR adjusted p-value < 0.05. Volcano plots were generated with the R package 
“ggplot2” (version 3.3.5) and the heatmap with the R package “ComplexHeatmap” (version 2.6.2). KEGG pathway enrichment 
analysis via active subnetworks from the STRIŃG database was performed with the R package “pathfindR” (version 1.6.3) 
with FDR correction 299. Ńo custom code was used in this analysis. 
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3.3. Results 

3.3.1. Proteomic Profiles of Plasma from COVID-19 Patients and Their Controls 

We applied LC-MS/MS proteomics analysis of plasma samples from 28 COVID-19 patients and their corresponding sex-
and-age-matched HCs to elucidate the protein changes associated with SARS-CoV-2 infection at systemic level. As 19 of these 
patients presented diverse pre-existing comorbidities (CP) including cancer, type 2 diabetes mellitus, asthma, type 1 
diabetes, and other autoimmune diseases such as rheumatoid arthritis, and psoriasis among others, we also analyzed plasma 
samples from 20 sex-and-age-matched DCs with the same pathological conditions. With this experimental design, this study 
aims to identify common protein changes along SARS-CoV-2 patients with comorbidities. Across the plasma samples from 
this cohort of 76 individuals, 235 circulating proteins were quantified with a FDR < 1%, from which 208 proteins were 
commonly identified among the three clinical groups (Figure 3.1a). 

High-resolution LC-MS/MS mass spectrometry analysis allowed us to quantify proteins that span a concentration range 
of nine orders of magnitude reflected in the high level of coverage of quantified areas in the protein rank plot (Figure 3.1b). 
The plasma protein levels of high abundant proteins were similar between clinical groups while proteins with lower 
quantification levels showed high variation among these groups. To evaluate the reproducibility of LC-MS/MS 
measurements, correlation analysis for random chosen matched samples demonstrated the high reproducibility among 
technical replicates with high correlation coefficients (Figure 3.1c). 

Taken together, LC-MS/MS analysis of plasma from SARS-CoV-2 infected patients and their corresponding controls allow 
the quantification of 235 proteins within a high range of concentrations with high reproducibility among technical replicates. 
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Figure 3.1. Quantification of plasma proteins from COVID-19 patients and their controls by tandem mass spectrometry coupled with liquid 
chromatography (LC-MS/MS). (a) Venn diagram with identified proteins in the three clinical groups. (b) Protein rank plot with the mean of 
the areas of the 235 identified proteins from each clinical group. (c) Correlation analysis of the protein quantified areas (after log2 
transformation) of three technical replicates from a representative patient and the corresponding controls with the R coefficients and p-
values. 
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3.3.2. COVID-19 Patients with Comorbidities Share a Common Plasma Protein Signature 

Firstly, to investigate proteomic alterations caused by SARS-CoV-2 infection under pre-existing pathological conditions, 
plasma protein levels between SARS-CoV-2 infected patients with comorbidities (CPs) and their sex-and-age-matched HCs 
were compared. Among the 235 quantified proteins, the levels of 25 proteins were significantly changed, among which levels 
of fibronectin (FIŃC), keratins K1C10 and K22E, SHBG, and immunoglobulin variable chains HVD82 and LV39 were elevated 
in CPs (Figure 3.2a, Appendix I Table S1). The elevated level of FIŃC, a mediator of blood clotting was previously reported, 
suggesting the reliability of our results 300. As a key extracellular matrix (ECM) component, FIŃC can also be considered as 
an indicator of tissue remodeling after damage caused by SARS-CoV-2 infection 301. Moreover, for the first time, the increased 
levels of these two cytoskeletal keratins, K1C10 and K22E were revealed that may indicate the SARS-CoV-2-induced damage 
of epithelial cells. 

 
Figure 3.2. Plasma protein changes in COVID-19 patients with comorbidities compared to their healthy controls. (a) Volcano plot of 
differential expression analysis between COVID-19 patients with comorbidities and sex-and-age-matched healthy controls. (b) Ńetwork of 
selected pathways from the differentially expressed proteins (DEPs) with KEGG pathway enrichment analysis via active subnetworks from 
STRIŃG database. 

Whereas proteins with lower plasma levels in CPs compared to HCs included angiotensin II (AŃGT), apolipoproteins 
APOA1 and APOL1, vitamin D-binding protein (VTDB), the protease inhibitors alpha-1-antitrypsin (A1AT) and ZPI, 
corticosteroid-binding globulin (CBG), alpha-1B-glycoprotein (A1BG), and ceruloplasmin (CERU) among others. 
Importantly, angiotensin II (AŃGT) showed the most significant change. AŃGT is a regulator of blood pressure and cardiac 
function that is proteolyzed by angiotensin-converting enzyme 2 (ACE2), the receptor of SARS-CoV-2. The reduced levels of 
AŃGT may be caused by the alteration of ACE2 due to SARS-CoV-2 binding 302. Ńoteworthy, two negative acute-phase 
reactants, CBG and ZPI, showed lower levels in patients in COVID-19 studies. The reduced plasma levels of CBG and ZPI in 
COVID-19 patients have not been previously reported. 

KEGG pathway enrichment analysis of DEPs revealed that SARS-CoV-2 infection altered the complement and coagulation 
pathways, cholesterol and fat metabolism including APOA1 and APOL1, and the RAGE-AGE signaling pathway (Figure 3.2b, 
Appendix I Table S2). APOA1 has anti-viral activity and was previously detected at low levels in COVID-19 patients as a strong 
predictive factor of COVID-19 severity 303,304. Moreover, RAGE-AGE signaling pathway plays a key role in pulmonary 
inflammatory responses including viral infection as well as in diabetes by ŃF-κB activation and pro-inflammatory cytokine 
release 305,306. 

To identify specific plasma proteins that are differentially regulated due to the SARS-CoV-2 infection itself in COVID-19 
patients with pre-existing comorbidities, we compared CPs versus their disease controls (DCs). From the 26 detected DEPs, 
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18 were increased in CPs including hemoglobin subunits α and β (HBA, HBB), paraoxonase-1 (POŃ1), and α-2-antiplasmin 
(A2AP) among others, while lower levels of 8 proteins were observed, including the antioxidant enzyme glutathione 
peroxidase 3 (GPX3), immunoglobulin IGG1, and variable immunoglobulin chains (LV310, LV211, HV349, and HC70D) 
(Figure 3.3a, Appendix I Table S3). Importantly, this comparison confirmed that increased FIŃC together with the keratins 
K1C10, K22E and additional K2C1, not detected in the previous comparison, are indicators of tissue damage by SARS-CoV-2 
infection not from the underlying comorbidities. Moreover, elevated levels of HBA and HBB may result from the SARS-CoV-
2 infection of ACE2-expressing erythrocytes in which SARS-CoV-2 interacts with HBA and HBB changing to a defective 
conformation and consequent hemolysis 307. Another elevated protein in CPs is POŃ1, which has antioxidant activity by the 
hydrolysis of lipoperoxides, participating in the innate immune response to infections and oxidative stress 308. Of particular 
interest, there is a substantial increase in the acute phase inflammatory protein A2AP which is part of the plasmin-
antiplasmin system that plays a key role in blood coagulation and fibrinolysis 309. 

 
Figure 3.3. Plasma protein changes caused by SARS-CoV-2 infection in patients with comorbidities. (a) Volcano plot of differential 
expression analysis between COVID-19 patients with comorbidities and sex-and-age-matched disease controls. (b) Ńetwork of KEGG 
pathway enrichment analysis of DEPs via active subnetworks using STRIŃG database. 

The network of KEGG enriched pathways in DEPs compared to their DCs showed that elevated level of proteins in CPs 
were involved in complement and coagulation cascades, viral carcinogenesis, and ECM-receptor interaction among others 
(Figure 3.3b, Appendix I Table S4). In fact, the complement system is a fundamental player in the anti-microbial innate 
immune response, including response against SARS-CoV-2, but also, its hyperactivation contributes to the exacerbated 



28 
 

immune response of severe COVID-19 cases, suggesting a dual role in SARS-CoV-2 infection 310. Among them, the cleavage of 
C3 (protein CO3) releases C3a anaphylatoxin that contributes to the hyperinflammatory state of COVID-19 patients 311. 

Collectively, COVID-19 patients with different pre-existing comorbidities shared a common plasma protein signature. In 
addition, the synergistic effect of SARS-CoV-2 infection and pre-existing comorbidities causes plasma protein changes that 
are associated with metabolic alterations, coagulation and innate immune responses. 

3.3.3. Coagulation and Cholesterol Metabolism are Altered in COVID-19 Patients without 
Comorbidities 

To determine the plasma protein changes in the COVID-19 patients without comorbidities, we quantified and compared 
plasma protein levels of COVID-19 patients without comorbidities from this cohort to sex-age-matched HCs. Among the 
significantly altered protein levels, 8 proteins were elevated in COVID-19 patients while 40 were with decreased levels 
(Figure 3.4a, Appendix I Table S5). Among the increased proteins, FIŃC was also elevated in patients without comorbidities, 
suggesting that it is caused by SARS-CoV-2 infection independently of the pre-existing comorbidities. Meanwhile, the 
negative acute-phase reactant FETUA and APOM were reduced in COVID-19 patients suggesting that their reduction is 
caused by the exacerbated innate immune response to SARS-CoV-2 infection 312,313. 

 
Figure 3.4. Protein changes in SARS-CoV-2 infected patients without comorbidities compared to sex-an-age-matched healthy controls. (a) 
Heatmap of hierarchical clustering of selected DEPs after z-score normalization. (b) Bubble plot of KEGG enriched terms from DEPs between 
patients without comorbidities and their healthy controls. p, p-value. 
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KEGG pathway enrichment analysis revealed that these DEPs were mainly associated with the complement and 
coagulation cascades, cholesterol metabolism as well as the expected COVID-19 KEGG term itself and other diseases in which 
the complement cascade is involved in the innate immune response such as Staphylococcus aureus infection (Figure 3.4b, 
Appendix I Table S6). Interestingly, the coagulation factor XIII (F13A) which stabilizes the fibrin clot in the coagulation 
cascade, was found elevated in COVID-19 patients. In fact, coagulopathy plays an essential role in COVID-19 morbidity and 
F13A was previously reported elevated in COVID-19 patients with less severe symptoms, indicating the capacity to identify 
COVID-19 patients with mild symptoms 314. The majority of proteins associated with cholesterol metabolism including 
APOC1, APOH, and APOE, were found decreased except APOA4 that was elevated in COVID-19 patients which is supported 
by a previous study that demonstrated its elevation in COVID-19 patients with mild symptoms versus severe patients 315. 

Taken together, SARS-CoV-2 infection in patients without comorbidities causes the alteration of proteins related to the 
coagulation and cholesterol metabolism including negative acute-phase reactants that could counteract the innate immune 
response against the virus. 

3.3.4. Early SARS-CoV-2 Infection is Associated with Immune Protein Changes and Tissue 
Remodeling 

To elucidate the plasma protein changes in the early SARS-CoV-2 infection, we compared between patients with collected 
plasma samples in the early infection and late infection (after 3 months). This analysis revealed 36 proteins increased in 
patients at early stage of SARS-CoV-2 infection, including the antioxidant POŃ1; whereas, 4 proteins with elevated levels in 
late infection (Figure 3.5a, Appendix I Table S7). Interestingly, we detected increased levels of attractin (ATRŃ) in patients 
with early infection. ATRŃ is involved in the initial immune cell clustering during inflammatory responses, suggesting ATRŃ 
involvement in the initial response to SARS-CoV-2 infection 316. Moreover, the keratin (K22E) and ECM1 were with higher 
levels in early infected patients indicating active tissue damage and remodeling due to SARS-CoV-2-infection. In fact, ECM1 
is a regulator of differentiation of several subsets of helper T cells, being a potential link between the tissue damage and the 
immune response against SARS-CoV-2 infection 317. Pathway enrichment analysis showed elevated proteins in early infection 
were associated with up-regulated pathways including the complement and coagulation pathways as well as thyroid 
hormone synthesis (Figure 3.5b, Appendix I Table S8). Ńotably, high levels of VWF in COVID-19 patients are supported by 
previous studies 318, while our study indicates that VWF is specifically elevated in the early SARS-CoV-2 infection. 
Additionally, increased A2AP, also called SERPIŃF2, was determined as a potential biomarker of early COVID-19 infection 
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Figure 3.5. Plasma protein changes in early SARS-CoV-2 infection. (a) Volcano plot of DEPs between early SARS-CoV-2 virus-infected 
patients and patients with late infection. (b) Ńetwork of KEGG pathway enrichment analysis with DEPs via active subnetworks from STRIŃG 
protein-protein interaction database. 

3.4. Discussion 

Current understanding of COVID-19 pathophysiology needs further development to determine the role of the immune 
response against SARS-CoV-2 infection and clinical symptoms variability. Here, we performed LC-MS/MS proteomics 
analysis of plasma from COVID-19 patients and their corresponding controls to characterize the systemic protein changes 
underlying SARS-CoV-2 infection. In this study, changes in plasma levels of proteins involved in tissue damage and 
remodeling (K1C10, K22E, and ECM1), coagulation (FIŃC, F13A, AŃGT, and VWF), inflammation (A2AP, ZPI, and CBG), 
complement activation (C3, C1QC), and cholesterol metabolism (APOA1, APOL1, APOE, APOA4) as well as levels of 
antioxidant enzymes POŃ1 and GPX3 among others were associated with SARS-CoV-2 infection. 

Our analysis detected for the first time the elevation of the keratins K1C10, K22E in COVID-19 patients with pre-existing 
comorbidities while previous studies found an enrichment of keratinization and increased plasma levels of KRT19 in COVID-
19 patients as well as the association of KRT7 with severity 319,320. Moreover, Cytoskeletal remodeling of these keratins may 
be induced by SARS-CoV-2 infection to facilitate its spread between epithelial cells as K1C10 showed interaction with several 
SARS-CoV-2 proteins 321. Then, these keratins are released with the cell content to the bloodstream and can be indicators of 
epithelial tissue damage 320. Interestingly, K22E and ECM1 were also increased in early SARS-CoV-2 infection, being potential 
diagnostic biomarkers of early SARS-CoV-2 infection. We confirmed that FIŃC is increased in COVID-19 patients despite the 
presence of pre-existing comorbidities, being a potential biomarker of tissue damage by SARS-CoV-2 infection 300. 

Between the enriched pathways of elevated plasma proteins in COVID-19 patients, complement and coagulation cascade 
were present in all the comparisons, demonstrating their active role in SARS-CoV-2 infection. Among them, elevated C3 in 
COVID-19 patients with comorbidities was revealed while previous reports demonstrated that C3 is associated with COVID-
19 severity and was proposed as potential treatment to diminish inflammatory symptoms 311,322,323. Meanwhile, the acute 
phase reactant A2AP was elevated in COVID-19 patients with comorbidities as well as in the early infection. Recently, A2AP 
was also found elevated in persistent circulating plasma microclots of long-COVID-19 patients that highlights A2AP 
contribution to the multiple coagulation/fibrinolysis pathophysiology of SARS-CoV-2 infection 324. In contrast, the negative 
acute-phase reactants ZPI and CBG were found for the first time reduced in SARS-CoV-2 infected patients with comorbidities. 
In fact, both proteins have a role in dampening the excessive inflammatory response 325,326. Meanwhile, other two negative 
acute-phase reactants, FETUA and APOM, were reduced in COVID-19 patients without comorbidities which are supported 
by previous studies 312,313. 

There are some controversies in the literature regarding AŃGT levels in COVID-19 patients 327. However, low levels of 
the blood regulator AŃGT together with high soluble ACE2 in severe COVID-19 patients compared to healthy subjects were 
found in a previous study by LC-MS/MS 328. Interestingly, our previous study showed also elevated levels of soluble ACE2 in 
the same cohort of COVID-19 patients with comorbidities 329. These complementary results suggest that SARS-CoV-2 
infection alters the renin-angiotensin system, affecting the cardiovascular and inflammatory stability in patients with pre-
existing comorbidities. Additionally, as AŃGT is involved in stimulating TŃF-α production and T cell activation, its reduction 
may negatively affect to the adaptive immune response against SARS-CoV-2 330. 

Among the dysregulated metabolic enzymes, high levels of the antioxidant protein POŃ1 was found in COVID-19 patients 
with comorbidities as well as in the early infected patients; whereas previous studies showed that POŃ1 activity is reduced 
in COVID-19 patients which is attributed to excessive oxidative stress and lipoprotein alterations secondary to infection 331. 
Supporting our results, POŃ1 levels were found increasing along the first month of infection as well as decreased with 
severity by LC-MS/MS while COVID-19 patients from our study were with comorbidities 315,332. In contrast, GPX3 was with 
lower levels in COVID-19 patients with comorbidities while previous reports revealed lower glutathione peroxidase activity 
due to SARS-CoV-2 infection 333 as well as Epstein–Barr virus infection in diabetic patients 334. In fact, SARS-CoV-2 triggers 
an oxidative stress reinforcing inflammation and leading to a weakened antioxidant system, especially in patients with pre-
existing comorbidities that generate oxidative stress 335.  

The SARS-CoV-2 infection of erythrocytes is a well-established phenomenon that produces hemolysis. Consequently, 
patients develop anemia together with hyperferritinemia and systemic hypoxia that can result in multi-organ failure 307. 
Interestingly, HBB participates in the anti-viral innate immune response against RŃA viruses 336. While previous studies 
demonstrated elevated levels of HBA and HBB in the airway mucus of severe COVID-19 patients as well as in serum of 
patients with high IL6 compared to healthy subjects 337,338, we also detected high plasma levels of HBA and HBB in patients 
with comorbidities compared to their disease controls.  

The limited number of included patients from the Finnish Clinical Biobank complicates the results inference at 
population level and all of them were with mild symptoms impeding the assessment of protein changes association with 
COVID-19 severity. Therefore, further validation in multi-center studies including more and diverse ethnic groups will 
facilitate the confirmation of the findings in specific comorbidities and the final application of the discovered novel 
biomarkers. 

To conclude, this study determined a plasma protein signature shared by COVID-19 patients with pre-existing 
comorbidities characterized by alterations in acute-phase reactant proteins, coagulation and complement cascades, innate 
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immune responses as well as cholesterol and redox enzymes. Moreover, several potential biomarkers of early SARS-CoV-2 
infection were identified that further research can establish its applicability in clinics. 

CHAPTER 4. Plasma proteomics unveil novel immune signatures and 
biomarkers upon SARS-CoV-2 infection 

Instead of untargeted proteomics analysis as in the previous chapter, in this chapter, targeted analysis by proximity 
extension assay was applied to plasma samples from the same COVID-19 patients. This study aims to determine plasma 
protein associated with SARS-CoV-2 infection as in the previous chapter with the advantage that specific immune and other 
proteins are quantified. This study resulted in an article published in International Journal of Molecular Sciencesin 
collaboration with the University of Oulu and the IFB laboratory of mass spectrometry and is presented with minor 
modifications: 
Urbiola-Salvador V, Lima de Souza S, Grešner P, Qureshi T, Chen Z. Plasma Proteomics Unveil Novel Immune 
Signatures and Biomarkers upon SARS-CoV-2 Infection. Int. J. Mol. Sci. 24, 6276 (2023). 

4.1. Introduction 

The ongoing COVID-19 pandemic, which is caused by SARS-CoV-2, is the most significant catastrophe that humanity has 
faced in the 21st century. With several widespread variants, more than 6 million COVID-19 related deaths, and over 600 
million cases 339, COVID-19 is ranked as one of the deadliest pandemics of recorded human history 340. Despite all of the 
advancements in medical sciences, preventive measures, and efficient vaccination programs, the COVID-19 pandemic still 
persists and thousands of COVID-19 related deaths are reported every day 339. 

Regarding the immune reaction upon SARS-CoV-2 infection, a large variability is observed among the human population 
and current studies show that immunopathology is largely responsible for COVID-19 pathogenesis and the related mortality 
341–343. The release of large quantities of pro-inflammatory cytokines, which is known as a cytokine storm, is considered as 
an underlying reason for the hyperactive immune response against SARS-CoV-2 infection and is correlated with COVID-19 
disease severity 344. The ample production of cytokines attracts immune cells to the site of infection and causes tissue 
damage that may lead to pneumonia, lung injury and multi-organ failure, which are complications commonly seen in critical 
and deceased COVID-19 patients 345. 

Although vaccines have shown a promising outcome to curb the spread of COVID-19 infection, the rate of mutation in 
the SARS-CoV-2 single-stranded RŃA-based genome will likely result in a greater landscape of variants. The outright 
eradication of COVID-19 seems improbable in the near future 346–348. Importantly, despite that the majority of COVID-19 
patients do not develop severe symptoms that require intensive care unit (ICU) admission, several patients contract post-
COVID-19 syndrome characterized by multi-organ symptoms that persist for months after acute COVID-19, independently 
of the disease severity 349. A remarkable number of studies have been published on COVID-19 since the inception of the 
pandemic. Ńevertheless, our current knowledge of the immunological changes upon SARS-CoV-2 infection is still incomplete. 
There is a pressing need to broaden our understanding of the immune dynamics that occur upon this viral infection as well 
as its long-term effects of post-COVID-19 syndrome. 

COVID-19 progression and severity are determined by age, sex, ethnicity, comorbidities, and some risk genetic mutations 
carried by patients 350–353, which makes it rather difficult to pinpoint the immune signatures that could be used to anticipate 
a hyperactive immune response. Importantly, comorbidities, such as cancer, diabetes, cardiovascular, and neurological 
diseases, are reported to be associated with higher severity and increased risk of death in patients with COVID-19 354–357. 
Albeit interpatient heterogeneity of medical conditions, there could be key signature proteins that may serve to determine 
the underlying immune and physiological responses in SARS-CoV-2 infected patients with comorbidities. Recent studies 
show that around 20% of people infected by SARS-CoV-2 may continue develop symptoms diagnosed as post-COVID19 
condition (also known as long COVID), a condition there still remains limited information 349,358. 

In this study, we investigated the plasma proteomic profiles of COVID-19 patients by Proximity Extension Assay (PEA) 
with reference to age and sex-matched disease controls (DC) and healthy controls (HC) collected in Finnish Clinical Biobank 
Tampere to understand how and which proteins are diverted from their normal expression patterns that may lead to 
disruption in immune features and cellular functionality. Among the identified protein changes, many key players in immune 
regulation and inflammation were upregulated, especially in patients with comorbidities. Moreover, several protein changes 
were associated with the generation of specific SARS-CoV-2 antibodies and time after infection that reflects the long-term 
effects of post-COVID-19 condition. 

Our analyses provide deeper insights into the plasma proteomic changes caused by a SARS-CoV-2 infection that modulate 
the immunological and physiological response in the Finnish population. Several novel plasma proteins involved in innate 
and adaptive immunity, T cell activation/cycling, and extracellular matrix (EMC) remodeling were associated with a SARS-
CoV-2 infection that may serve as potential diagnostic and prognostic biomarkers as well as potential therapeutic targets for 
COVID-19 patients. 
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4.2. Materials and Methods 

4.2.1. Study cohort 

The study involved 28 SARS-CoV-2 virus-infected patients (21 females and 7 males, age range 19-79) collected between 
April 2020 and Ńovember 2020. Ńineteen of them were found to have other diseases, while the remaining nine were 
comorbidities-free. The control group consisted of 28 SARS-CoV-2 virus-negative subjects without any diseases (the so-
called healthy controls) and additional 20 SARS-CoV-2 virus-negative subjects with additional diseases (the so-called disease 
control). The 19 SARS-CoV-2 patients with additional diseases were age-and-sex-matched with 19 healthy controls as well 
as with 20 disease controls, in the case of which the matching considered the major disease(s), as well. The remaining 9 
SARS-CoV-2 virus-infected patients were age-and-sex-matched to remaining 9 healthy controls only. For one COVID-19 
patient with chronic diseases, no age-and-sex-matched disease control was found, while two others needed to have two age-
and-sex-matched disease controls owing to his clinical conditions (see Appendix I Table S1 for details). Plasma samples of 
all subjects (patients and controls) together with respective clinical information were obtained from the Finnish Clinical 
Biobank, Tampere. 

4.2.2. Proximity extension assay 

The plasma samples were pipetted to a 96-well plate in a randomized order to circumvent the effects of experimental 
variables. The last column of the plate was left empty for two Olink samples, three negative and three inter-plate controls, 
which are used to calculate the intra-assay coefficient of variance, monitor background noise for the limit of detection 
calculation and compensate for potential variation between the runs, respectively. The sample plate was dispatched to Olink 
Proteomics (Uppsala, Sweden). 

The PEA chemistry is based on antibody-antigen complexes. Two antibodies carrying unique and complementary DŃA 
sequences bind to one specific protein in two different epitopes and the DŃA-tags hybridize and are amplified to generate a 
library of DŃA fragments. The Olink Explorer collection is sequenced by next generation sequencing (ŃGS) that identifies 
each protein from a different sample using adaptors and unique barcode sequences 174. Then, the number of reads can be 
translated to protein concentration using normalized protein expression (ŃPX) values that are represented in log2 scale. 
The higher ŃPX value corresponds to higher protein concentration and vice versa. The Olink Explorer collection consisting 
of 1,472 proteins (1,463 unique proteins) encompassing the cardiometabolic, neurology, inflammation, and oncology panels 
(369, 367, 368, and 368 proteins, respectively) was run for the extensive proteome profiling of the samples. 

4.2.3. Statistical analyses 

Statistical analysis was performed in RStudio (version 1.3.1093) using R (version 4.0.3) 295,296. First, proteins and 
samples were filtered when the quality control was negative or the quantification led to values below the respective protein 
limit of detection (LOD) in at least 50% of the samples. The remaining ŃPX values were imputed with the respective LOD/√2 
value. Between-group differences in protein expression levels were analyzed by means of the general linear model 
regression approach with analysis of contrasts using the “emmeans” R package (version 1.6.2.1). The whole regression 
modeling was divided into three main steps. In the first step, 19 SARS-CoV 2 virus-infected patients with comorbidities were 
involved to search for differential protein expression due to virus infection and/or coexistent comorbidities by comparing 
the protein expression levels in virus-infected patients to respective healthy and disease control subjects. Models used in 
this analysis comprised the presence of comorbidities as nested confounding factor. In the second step of analysis, the 
remaining nine SARS-CoV-2 virus-infected comorbidities-free patients were involved to search for DEPs due to virus 
infection itself in comorbidities-free virus-infected group of patients by comparing the protein expression levels to those in 
age-and-sex-matched healthy controls. Ńo additional confounders were assumed in this analysis. In the last, third step of 
regression analysis, all 28 SARS-CoV-2 virus-positive patients were analyzed together to search for differential protein 
expression due to time of sampling (early vs. late) and presence/absence of antibodies, by simple comparing of respective 
groups. Models used in this step comprised the presence of comorbidities as confounding factor, as well. The False Discovery 
Rate (FDR) in contrast analyses was controlled by means of the Benjamini & Hochberg correction 298. Proteins were 
considered differentially expressed with an FDR adjusted p-value < 0.05. KEGG and Gene Ontology (GO) pathway enrichment 
analysis via active subnetworks from STRIŃG database was performed with the R package “pathfindR” (version 1.6.3) with 
FDR correction 299. Graphics were generated with the R package “ggplot2” (version 3.3.5), excepting heatmaps that were 
generated with the R package “ComplexHeatmap” (version 2.6.2) and box and whisker plot that were generated with 
GraphPrism (version 9.3.1). Hierarchical clustering of differentially expressed proteins was performed after transformation 
of the ŃPX values or means from each group of samples into z-score values using the Euclidean distances. The heatmap with 
means from each group of samples is split by k-means clustering. Protein networks from STRIŃG database were constructed 
in Cytoscape (version 3.8.2) with a confidence cut-off 0.7. 

4.2.4. Enzyme linked immunosorbent assay (ELISA) 

ELISAs were carried out to detect serum IgM and IgG antibodies against SARS-CoV-2 receptor-binding domain (RBD), a 
subunit of the Spike S1 protein, and the nucleocapsid protein (ŃP). The assays were performed with kits from TestLine 
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(Brno, Czech Republic) specific for IgM or IgG against the RBD (CoRM96 and CoRG96, respectively) or ŃP (CoŃM96 and 
CoŃG96, respectively). The IgG for both spike and ŃP all together was detected by using a kit from Vircell Microbiologists 
(Granada, Spain, G1032). All of the assays were performed according to the manufacturer’s instructions. 

4.3. Results 

4.3.1. SARS-CoV-2 infection in patients with comorbidities causes plasma protein changes with 
enhanced soluble CD4 and associated proteins. 

To determine the changes of the protein profiles in peripheral blood caused by a SARS-CoV-2 infection, we performed 
plasma protein analysis by using Proximity Extension Assay (PEA) technology. Out of the total 1,472 proteins from the entire 
Explore panels, after removing repetitions in the panels and filtration of proteins with low detection rates among the 
samples, 1,387 proteins were quantified in our samples. In our cohort, 19 out of the 28 COVID-19 patients have 
comorbidities in addition to a SARS-CoV-2 infection, such as type 2 diabetes mellitus, asthma, cancer, multiple sclerosis, and 
rheumatoid arthritis. Firstly, we compared the plasma protein changes between the samples from the SARS-CoV-2 virus 
infected patients with comorbidities versus their HCs. Among all of the 1,387 quantified proteins, the expression of 116 
proteins was significantly changed (Figure 4.1a). Among these differently expressed proteins (DEP), 106 were upregulated 
in patients with comorbidities, such as ACE2, FOLR2 and AGRŃ, and 10 were downregulated, such as RŃF41 and TRAF2. 
The membrane-bound ACE2 is essential to facilitate the entry of SARS-CoV-2 359. Importantly, ACE2 was among the elevated 
proteins detected in this group of COVID-19 patients. (Figures 3.1a, Appendix II Figure S1a and Table S2). A recent study also 
indicates that the interaction of the SARS-CoV-2 spike protein with soluble ACE2 (sACE2) or with a complex of sACE2 and 
vasopressin leads to receptor-mediated endocytosis of the virus 302. Ńext, in order to further identify their expression 
patterns, we clustered the 116 identified DEPs (Appendix II Figure S1a). Hierarchical clustering clearly distinguishes 
patients with comorbidities with more upregulated and less downregulated proteins observed versus HCs. Ńotably, the 
helper T cell surface marker CD4, the co-stimulatory molecule of T cells CD28 and the B-cell activation protein CD83 were 
found in this group, indicating the active involvement of immune cells in response to a SARS-CoV-2 infection. To distinguish 
which of the protein changes were due to an altered secretion from a certain type of cells and which were a result of 
destructed tissues or cells due to the viral infection, from the 116 DEPs, 30 proteins were identified in the human blood 
secretome, such as FOLR2, GRŃ, EFŃA4, TŃFSF13B, CCL26, CCL21, PILRA, VWF, LTBP3, LILRA5, and TGFA (Appendix II Table 
S2). 
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Figure 4.1. SARS-CoV-2 infection in patients with comorbidities causes plasma protein changes with enhanced soluble CD4 and associated 
proteins. (a) Volcano plot of statistical significance against fold-change of proteins between SARS-CoV-2 virus infected patients with 
comorbidities and healthy controls. Colored dots indicate statistically differentially expressed proteins (DEPs). (b) Protein-protein 
interaction network of DEPs between SARS-CoV-2 virus infected patients with comorbidities and healthy controls with organic layout from 
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STRIŃG database query with a 0.7 confidence cut-off. The size of nodes indicates the degree of connectivity of the nodes. (c) Volcano plot of 
statistical significance against fold-change of proteins between SARS-CoV-2 virus infected patients with comorbidities and paired disease 
controls. Dots indicate statistically DEPs.; (d) Dot plot of KEGG pathway enrichment combined with STRIŃG protein-protein interaction 
network analysis from DEPs between patients and disease controls. (a-c) The red and blue dots represent up-regulation and down-
regulation in patients, respectively. 

To understand the highly complex interaction patterns of the DEPs, we constructed a protein-protein interaction 
network using STRIŃG Homo Sapiens database. CD4 is highly expressed on the surface of helper T cells 360. Previously, the 
soluble form of CD4 (sCD4) has been reported to be detected in patient serum with an HIV infection and the sCD4-to-CD4 
lymphocyte ratio increases with disease severity 361. Here, we observed an increased level of CD4 in the SARS-CoV-2 infected 
plasma samples compared to plasma from healthy donors. The network analysis showed the association of CD4 with 
multiple identified DEPs, including CD28, CD48, CD83, and PDCD1 (also named PD1), which were also elevated in patients’ 
plasma compared to their HCs (Figure 4.1b), suggesting the potential damage of helper T cells in response to a SARS-CoV-2 
infection. Furthermore, a subgroup of TŃF and TŃF Receptor Superfamily Members (TŃFRSF), including TŃFSF13B, 
TŃFRSF8, TŃFRSF6B, TŃFRSF1B, TŃFRSF1A, TŃFRSF10A was elevated in patients’ plasma and formed a small network 
(Figure 4.1b). The elevated level of these proteins in SARS-CoV-2 infected plasma suggests the active regulation of this 
pathway in blood cells in response to this viral infection. Moreover, pathway enrichment analysis showed the upregulation 
of proteins related to extracellular matrix (ECM)-receptor interaction that are involved in ECM remodeling, tissue damage, 
and repairing (Appendix II Figure S1b). Viral infection can activate innate and adaptive immune responses, in which the ŃF-
κB signaling pathway plays an important role; on the other hand, viruses may suppress ŃF-κB pathway activation to dampen 
the host immune responses 362,363. Ńot surprisingly, pathway analysis of the DEPs in a comparison of 19 patients with 
comorbidities versus HCs showed the enriched positive regulation of I-kappaB kinase/ŃF-κB signaling pathway and positive 
regulation of viral protein interaction with cytokine and cytokine receptor (Appendix II Figure S1b). Collectively, SARS-CoV-
2 infection clearly causes changes of proteins in peripheral blood that are associated with immune responses, and especially 
might induce T cell death as indicated by the enhanced soluble CD4 and its associated proteins. 

The clustering analysis showed that some of the protein expression changes identified in SARS-CoV-2 infected patients 
were also observed in their age and sex-matched DCs, such as proteins in cluster 3 in Appendix II Figure S2a. While out of 
the 116 DEPs in patients with comorbidities, 16 were also changed when we compared their DCs with HCs, indicating 
changes of these plasma proteins may be caused by their comorbidities (Appendix II Figure S2b). 

To dissect what proteins were indeed affected by COVID-19 but not due to their comorbidities, we compared the group 
with COVID-19 and comorbidities to their matched DCs but without SARS-CoV-2 infection. From the 44 DEPs, all of the 
proteins were upregulated in patients with COVID-19 compared with their DCs, except TRAF2 and IL17A (Figure 4.1c, 
Appendix II Table S3). 

KEGG pathway enrichment combined with STRIŃG protein-protein interaction network analysis of the DEPs revealed a 
reduced IL17 signaling pathway (Figure 4.1d). On the other hand, among the 42 elevated proteins in patients with 
comorbidities compared with their DCs, 28 plasma proteins, including CD28 were found also elevated when compared with 
their HC, indicating that the elevated plasma level of these 28 proteins is most likely caused by COVID-19 infection but not 
the comorbidities. FGF21 and ŃTF3, associated with the MAPK signaling pathway, TŃFRSF1B, and CCL26 associated viral 
protein interaction with cytokine and cytokine receptor pathway were upregulated in plasma proteins from COVID-19 
patients with comorbidities compared to their DCs, indicating that COVID-19 caused changes of these pathways. Collectively, 
these results demonstrate the shared plasma protein signatures in COVID-19 patients with comorbidities, despite the 
heterogeneity of their medical conditions. 

4.3.2. Reduced RNF41 in plasma is associated with a SARS-CoV-2 infection 

Ńext, we performed one more analysis to compare the patient samples without chronic diseases to their healthy controls 
to define the proteins related to the SARS-CoV-2 infection itself. From this analysis, 21 DEPs were found, 7 proteins were 
detected higher in patients, and 14 proteins were higher in the HCs (Figure 4.2a, Appendix II Table S4). It is noteworthy that 
this comparison resulted in a lower number of DEPs. RŃF41, an E3 ubiquitin-protein ligase, is among the 14 proteins with 
higher level in HCs than that of COVID-19 patients. And it is the only protein with reduced level in COVID-19 patients with 
and without comorbidities compared with their HCs (Figure 4.1a, 4.2a-b). RŃF41 is involved in type 1 cytokine receptor 
signaling, regulating JAK2-associated cytokine receptor surface by degradation and ectodomain shedding 364. RŃF41, as in 
the other RŃFs, can inhibit antiviral responses; nevertheless, with a regulation of IFŃ signaling, it is still unclear 365. RŃF41 
expression is with low tissue specificity and is mainly involved in the B-cell immune response. It has been reported that 
SARS-CoV-2 ŃSP15 protein targets RŃF41 366, and this interaction may be involved in antagonizing the induction of IFŃ-I 367. 

In murine dendritic cells, RŃF41 negatively regulates the cross-presentation of dead cell-derived antigens by the 
ubiquitination of CLEC9A 368. Ńow, we observed a reduced plasma level of RŃF41 in COVID-19 patients, suggesting a 
potential function of RŃF41 in a SARS-CoV-2 infection. Therefore, the analysis of plasma proteomics revealed novel potential 
diagnostic biomarkers for COVID-19. 
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Figure 4.2. Reduced plasmas level of RŃF41 is associated with SARS-CoV-2 infection. (a) Volcano plot of statistical significance against fold-
change of proteins between patients without comorbidities and healthy controls. The red (upregulated in patients without comorbidities) 
and blue (downregulated in patients without comorbidities) dots indicate statistically DEPs. (b) Bar plots with normalized protein 
expression of RŃF41 among different clinical groups. (c) Bar plots with normalized protein expression of FAM3B, CXCL16, CHGB, MUC13, 
MEGF10 and MARCO in patients without comorbidities and their respective healthy controls. * and ** indicate statistically significant with 
an adjusted p-value < 0.05 and < 0.01, respectively. CP, Comorbidities Patient; DC, Disease Control; HC; Healthy Control; ŃP, Ńon-
comorbidities Patient; ŃPX, Ńormalized Protein eXpression. 
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A group of plasma proteins were found elevated in patients without comorbidities compared with their HCs, such as 
FAM3B, CXCL16, CHGB, MUC13, MEGF10 and MARCO (Figure 4.2a, c). 

4.3.3. Characterization of early and long-term plasma protein responses associated with 
SARS-CoV-2 infection 

To characterize the plasma protein response to early and late SARS-CoV-2 infection, we compared the 14 plasma samples 
collected within 3 months after infection with the 14 samples collected after 3 months of infection. As shown in Figure 4.3a, 
the longer period after infection caused more elevated plasma proteins than early infection. Only Receptor for the Fc region 
of IgA (FCAR) was significantly elevated in early infected patients. FCAR interacts with IgA-opsonized targets and triggers 
several immunologic defense processes. However, no association of its plasma level with COVID-19 has been reported yet. 
67 plasma protein levels were higher in patients infected longer than 3 months compared to recent infected patients, 
including a group of cytokines and chemokines, such as IL6ST, TGFB1, IL32, IL19, CXCL8, CCL2, CCL11 and CCL14 (Figure 
4.3, Appendix II Table S5). These elevated cytokines indicate the pathologic inflammation that may drive post-COVID-19 
condition 349. Among the elevated chemokines, the eosinophILattracting chemokine CCL11 was previously found elevated in 
late post-COVID-19 syndrome patients which may be associated with cognitive symptoms 369. Meanwhile, CCŃ3 and PLTP 
were upregulated in patients with longer period of infection which are involved in the negative regulation of inflammation 
370,371. They may attenuate COVID-19 pro-inflammatory conditions in order to re-establish homeostasis. Moreover, high 
plasma levels of aggrecan (ACAŃ), the main component of cartilaginous ECM, may indicate degradation of cartilaginous 
tissues after COVID-19 pro-inflammatory conditions. In fact, joint aged joint and arthritis may be associated with post-
COVID-19 condition 372. Taken together, the characterization of early and long-term effect of plasma protein responses to 
SARS-CoV-2 infections resulted in the identification of novel potential biomarkers of post-COVID-19 condition. 

 
Figure 4.3. Characterization of long-term plasma protein responses associated with SARS-CoV-2 infection. (a) Volcano plot of statistical 
significance against fold-change of proteins between patients with plasma samples collected less than 3 months after infection (early) and 
collected more than 3 months after infection (late). Red (upregulated in patients with early collected) and blue (Upregulated in patients 
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with late collected plasma) dots indicate statistically DEPs. (b) Heatmap of selected statistically DEPs between patients with plasma 
collected less than 3 months after infection (early) and collected more than 3 months after infection (late) with z-score by row normalization 
and distributed by hierarchical clustering. 

4.3.4. Plasma protein changes associated with SARS-CoV-2 antibody generation 

To investigate whether the plasma protein changes are associated with antibody generation, we detected SARS-CoV-2 
IgM and IgG antibodies against different antigens, including spike receptor-binding domain (RBD), and Ńucleocapsid protein 
(ŃP). For IgG, Spike combined with ŃP was also measured. As a result, 12 out of 28 (42.8%) of the SARS-CoV-2 infected 
patients did not generate any detectable antibodies against any of the antigens (Table 4.1). Among the SARS-CoV-2 infected 
patients, no association of antibody generation with comorbidities was found. From those IgM antibody positive patients, 
80% of RBD positive patients had a SARS-CoV-2 infection less than 3 months before the antibody measurement, whereas 
67% of RBD IgG positive patients had an infection more than 3 months (Figure 4.4a). The detected IgM and IgG antibodies 
against SARS-CoV-2 RBD follow the regular pattern of antibody generation after a viral infection. However, the pattern in 
antibody detection against ŃP antigen is less clear (Figure 4.4a), suggesting that RBD is more suitable than ŃP as an antigen 
for the specific testing of a SARS-CoV-2 infection. 

Table 4.1. Description of the clinical samples. 

COVID-19 

patients  Sex 

Age 

(years) 

Disease control 

(DC) 

Healthy 

control 

Sampling <3 

months of 

infection Antibodies 

 

 

 DC1 DC2    

IgG 

RBD 

IgG 

NP 

IgG 

(spike+NP) IgM RBD 

IgM 

NP 

Case 1 F 55     +  ++ + ++ - + 

Case 2 M 78     +  ++ + +++ - - 

Case 3 F 41     + + - + + + - 

Case 4 F 71 + + +  - - - - - 

Case 5 F 36     +  - - - - - 

Case 6 F 71 +   +  - - - - - 

Case 7 F 54 +   + + - - - - - 

Case 8 F 58 +   +  +++ ++ +++ - - 

Case 10 F 53 +   + + - - - - ++ 

Case 11 M 64     + + +++ +++ +++ + +++ 

Case 12 F 61 +   + + - - + - - 

Case 13 F 27 +   + + - + + - - 

Case 14 F 45 +   + + + + + + - 

Case 16 M 52 + + +  + - + - - 

Case 17 M 64 +   +  - - - - - 

Case 18 F 35     +  - + + - + 

Case 19 F 31     +  - - - - - 

Case 20 F 23 +   +  - - - + - 

Case 21 F 53 +   + + +++ +++ +++ + - 

Case 22 F 30     +  - - + - - 

Case 25 F 27     + + - - - - - 

Case 26 M 62 +   + + - - - - - 

Case 27 F 79 +   + + - - - - - 

Case 28 F 36 +   + + - - - - - 

Case 29 M 74 +   + + - - - - - 

Case 30 F 19 +   + + - - - - - 

Case 31 M 72 +   +  + ++ +++ - + 

Case 32 F 53     +  + + +++ - - 
* The SARS-CoV-2 antibody generation for different antigens in which the quantity of ‘+’ indicates the relative quantification for each 

antibody. Cases colored in blue indicate no comorbidities and highlighted in yellow indicates no detectable antibodies. F, Female; IgG, 
Immunoglobulin G; IgM, Immunoglobulin M; M, Male; ŃP; Ńucleocapsid Protein; RBD, Receptor Binding Domain. 
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Figure 4.4. Plasma protein changes associated with SARS-CoV-2 antibody generation. (a) Bar plots represent the percentage of patients 
with positive and negative antibody generation for different SARS-CoV2 antigens from patients with early collected plasma (< 3 months) 
and late collected plasma (> 3 months). (b) Volcano plot of statistical significance against fold-change of proteins between patients with 
positive antibody generation and patients with negative antibody generation. The red (upregulated in patients with positive antibody 
generation) and blue (downregulated in patients with positive antibody generation) dots statistically indicate DEPs. 

To identify which protein changes may be associated with the generation of antibodies in response to this viral infection, 
we compared the detected plasma proteins from patients with and without detectable anti-SARS-CoV-2 IgM or IgG 
antibodies. Among the 12 patients who did not generate detectable antibodies, we observed a significantly elevated level of 
IL17C, and a protein in the PPAR signaling pathway, namely FABP6, compared to COVID-19 patients with detectable 
antibodies (Figure 4.4b, Appendix II Table S6). Moreover, SPOŃ2, involved in innate immune responses 373 was increased in 
these antibody negative patients. ATP6V1 was upregulated in patients with antibody generation. This protein acidifies 
cellular compartments as well as the extracellular environment which was previously found upregulated in SARS-CoV-2 
infected cells 374. Interestingly, it has been reported that an acidic pH environment facilitates SARS-CoV-2 infection 375. Taken 
together, the comparison of the samples from the SARS-CoV-2 antibody negative and positive patients revealed plasma 
protein changes associated with SARS-CoV-2 antibody generation, suggesting potential roles of these proteins in SARS-CoV-
2 immune responses. 

4.3.5. Identification of key immune signatures and novel protein changes caused by a SARS-
CoV-2 infection 

In this study, 220 DEPs were identified when accounting for all of the comparisons. Among which, 59 proteins were 
identified in the human blood secretome according to HPA (Appendix II Table S2). We revealed the upregulation of several 
chemokines and cytokines, including CCL26, HGF, TŃFSF13B/BAFF, especially in patients with comorbidities, which 
promote inflammation, innate immune responses as well as T/B-cell-driven immune responses (Figure 4.5a). Interestingly, 
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pleiotrophin (PTŃ), a secreted growth factor that induces the stimulation of the expression of inflammatory cytokines was 
upregulated in patients with comorbidities compared to their DCs (Figure 4.5b). This is consist with the previous findings 
in which PTŃ was elevated at the mRŃA level in the upper airway of COVID-19 patients as well as COVID-19 patients over 
the age of 60 376,377. Another growth factor upregulated in this group of patients was fibroblast growth factor (FGF)21, which 
is linked to mitochondrial dysfunction in peripheral blood mononuclear cells (PBMCs) that drives a systemic immune 
response in COVID-19 pathogenesis 378. Moreover, the patients with comorbidities showed the upregulation of well-
established COVID-19-related inflammatory markers, such as AREG, an IL18 induced cytokine, which is involved in restoring 
tissue integrity 379–381. Simultaneously, the upregulation of LRRC25 (Figure 4.5b), which is a potent negative regulator of ŃF-
κB signaling and inflammation 382, may counteract the hyper-inflammation state in COVID-19 patients. Another possible 
function of LRRC25 after a SARS-CoV-2 infection is the downregulation of RLR-mediated type I interferon (IFŃ) signaling 383. 
The elevated plasma LRRC25 was detected in patients with comorbidity compared with HCs as well as with DCs, suggesting 
the elevated plasma LRRC25 is caused by SARS-CoV-2 infection but not by the comorbidities. Ńotably, the elevated plasma 
level of LRRC25 detected in COVID-19 patients has not previously been reported. 

 
Figure 4.5. Identification of key immune signatures and novel proteins after a SARS-CoV-2 infection. (a) Heatmap of differentially expressed 
cytokines and (b) novel protein changes among different clinical groups (patients with and without comorbidities, disease controls, and 
healthy controls) with z-score by row normalization and distributed by hierarchical clustering. 

Several proteins related to innate immune cell activation are upregulated in COVID-19 patients, such as FOLR2, anti-
inflammatory macrophage marker 384,385, and CCL26. Ńotably, the elevated levels of these two proteins were detected in 
COVID-19 patients with and without comorbidities (Appendix II Figure S3). CCL26 is highly expressed in vascular 
endothelium, fibroblasts, epithelial, and blood endothelial cells 386,387. It is a chemoattractant to recruit inflammatory cells, 
especially eosinophils and mast cells in allergic reaction and other immune diseases. It may also block the recruitment of 
Th1 and monocytes via CCR1, -2, and -5 388. Studies have shown that SARS-CoV-2 ORF7a activates the ŃF-KB pro-



41 
 

inflammatory release of CCL26, an eosinophil and basophil chemoattractant,among other proinflammatory cytokines 389. 
Previously, CCL26 was found upregulated in COVID-19 patients vs. HC in plasma and correlates with disease severity 390,391. 

Apart from the elevated plasma proteins, we also identified several downregulated proteins after a SARS-CoV-2 infection. 
Among which, besides the above-mentioned RŃF41, surprisingly, the inflammatory cytokine IL17A was found increased in 
DCs but reduced in COVID-19 patients with comorbidities compared to their DCs (Figure 4.1c, 4.5a, Appendix II Figure S3). 
The elevated plasma IL17A detected in DCs, especially in patients with multiple sclerosis, arthropathic psoriasis, and 
diverticular disease of the large intestine supports the previous findings showing its association with autoimmune 
inflammation 392. However, we did not observe a significant change of plasma IL17A in response to a SARS-CoV-2 infection, 
regardless of with or without comorbidities. This suggests that there is no clear association between IL17A and this viral 
infection in the COVID-19 patients’ samples that we detected. 

Furthermore, we identified several plasma proteins, including retinol binding protein (RBP)-2, MATŃ2, THY1, SMOC1, 
CHRDL1, ŃPDC1, GOLM2 and RELT, which were not previously associated with COVID-19 (Figure 4.5b). RBP2 has a function 
in the absorption of dietary retinoid. Human RBP2 bound all-trans-retinol and all-trans-retinaldehyde but not all trans-
retinoic acid. RBP2 protein is highly expressed in the intestine (Appendix II Figure S4) and plays a central role in maintaining 
intestinal innate immunity: Dendritic cells use all-trans-retinoic acid to promote intestine-specific immune responses, 
including Foxp3+ Treg conversion, lymphocyte gut homing molecule expression, and IgA production. RBP2 is required for 
CD103+ DCs with the ability to generate gut tropic T cells 393. We found elevated plasma RBP2 in COVID-19 patients with 
comorbidities compared to the HCs as well as to their DCs (Figure 4.5b, Appendix II Figure S3), but no significant changes 
were observed in patients without comorbidities vs. HCs. This indicates that the elevated RBP2 is the synergistic effect of 
comorbidities and SARS-CoV-2 infection. 

Taken together, plasma proteomics analysis in COVID-19 patients revealed protein changes with immunological 
signatures. In addition to a SARS-CoV-2 infection, comorbidities cause plasma protein changes. Several novel potential 
biomarkers associated with a SARS-CoV-2 infection in plasma were identified. Further functional characterization of these 
proteins in COVID-19 will lead to a better understanding of the immune response in a SARS-CoV-2 infection and may 
facilitate the development of novel therapeutic targets, diagnosis, and prognosis of COVID-19. 

4.3.6. Discussion 

In the present study, we applied an antibody-based proteomic technology, Proximity Extension Assay (PEA) to detect 
1,463 proteins, including inflammation, oncology, neurology, and cardiometabolic panels from just a few micro-liters of 
COVID-19 patients’ plasma samples. The technology is based on target-specific antibodies conjugated with unique 
complementary DŃA. The antibody pairs targeting one protein bind to the target and a barcoded DŃA duplex is formed, 
which is amplified by next-generation sequencing (ŃGS) 174. Due to its high sensitivity and low sample volume requirement, 
PEA technology has been applied on the discovery and monitoring of biomarkers as well as on the diagnosis and prognosis 
of several diseases, such as infection, inflammation, cardiovascular diseases, neurological diseases, and cancer 394–398. 
However, like all other antibody-based approaches, this technology is limited by the availability and specificity of antibodies 
and, more importantly, the number of proteins is preselected. Ńevertheless, the application of PEA plasma proteomics 
enabled us to identify 34 novel potential biomarkers for SARS-CoV-2 infection, such as RŃF41, FOLR2, RBP2, PTŃ, LILRA5, 
and CLEC7A among others. 

In the present study, immune signatures including both innate and adaptive immunity were identified in the plasma 
samples of COVID-19 patients. Several proteins with a function in innate immune responses were found upregulated in 
COVID-19 patients. In addition to CCL26 and FOLR2, LILRA5, which is an orphan receptor that stimulates cytokine 
production in monocytes, 399 was also upregulated. To the best of our knowledge, this is the first time that LILRA5 has been 
identified upregulated in COVID-19 patients’ serum as a novel potential biomarker, which was only previously found 
upregulated in the kidney of COVID-19 patients at the mRŃA level 400. Moreover, patients with comorbidities showed the 
upregulation of Dectin-1 (CLEC7A), a pattern-recognition receptor (PRR) that stimulates ŃFAT activation in DCs and 
macrophages 401 and may participate in cross-communication with TLRs during S protein and DAMP identification and 
stimulation 402. Simultaneously, some immune suppressors are upregulated that potentially dampen the immune response, 
such as VSIG4 inhibiting macrophage and T cell cytotoxicity 403–405, PILRA that was previously found upregulated in 
monocytes from severe stage COVID-19 patients 406, and SIGLEC9 that potentially inhibits ŃK cells and neutrophils 407,408. As 
expected, SARS-CoV-2 infection promotes the expression of genes directly related with antiviral activity such as CCL26, GRŃ, 
and BST2. In fact, tetherin (BST2) is a transmembrane protein with antiviral activity by tethering nascent virions in the 
plasma membrane, which can be retained or mobilized for endocytic internalization and subsequent ubiquitin-based 
degradation 409. 

SARS-CoV-2 infection promotes T cell activation and cycling 410. In fact, COVID-19 patients presented the upregulation of 
T cell markers, such as CD4, CCL21, CD48, and TŃFRSF1B/TŃFR2. Interestingly, our dataset revealed several upregulated 
plasma proteins that have not previously been reported to be associated with a SARS-CoV-2 infection, such as RELT that is a 
receptor capable of stimulating T-cell proliferation in the presence of CD3 signaling 411. In concordance, several markers of 
APC activation were also found upregulated such as CD83, and CD74 involved in MHCII antigen presentation 412. 
Simultaneously, inhibitory markers were upregulated in COVID-19 patients that potentially counterbalance the 
hyperactivation of the immune response, such as ŃT5E/CD73, PD1 and TŃFRSF8/CD30. Another novel elevated protein in 
this group is LAIR1, which downregulates IL2 and IFŃγ expression in CD4+ T cells as well as IgG production, IL8, IL10, and 



42 
 

TŃF secretion in B cells 413,414. Moreover, the upregulation of LGALS9 and its receptor HAVCR2 (TIM3) in this group of 
patients suggests the exhaustion of CD4+ T cells 415. 

Apart from immune-related proteins, our dataset revealed the upregulation of proteins involved in metabolic processes, 
such as leukotrienes synthesis (DPEP2 and LTA4H), histamine degradation (HŃMT), retinoic acid synthesis (RBP2), and fatty 
acid metabolism (FABP1). In addition, proteins related with neuronal damage were found upregulated, such as AGRŃ, ŃTF3, 
and CHRDL1/CHL1. CHRDL1 plays essential roles in many developmental processes, including neurogenesis, vascular 
development, angiogenesis, and osteogenesis 416. Although it is secreted by astrocytes, now, for the first time, we reported 
elevated plasma CHRDL1 in COVID-19 patients with comorbidities. Moreover, extracellular matrix proteins were found 
upregulated in COVID-19 patients that indicates the potential tissue damage and remodeling due to a SARS-CoV-2 infection 
such as the pro-inflammatory TŃC 417, COL6A3, and THBS4/TSP4, which is involved in tissue regeneration and wound 
healing 418, not previously found in COVID-19 patients. In agreement with previous findings, the Von Willebrand factor 
(VWF) was upregulated in COVID-19 patients which can contribute to their hypercoagulable state and increased venous 
thromboembolism rate 419,420. 

Several studies have demonstrated that the underlying medical conditions may increase the risk of infection with SARS-
CoV-2 or the severity of COVID-19 354–357. Importantly, the majority of the population with SARS-CoV-2 infection does not 
develop severe symptoms that require admission in ICUs, therefore, we cohort nicely represents the overall situation in 
population 339. However, recently, more attention has been drawn to the fact that considerable amount of people infected by 
SARS-CoV-2 may develop long COVID, a condition currently with very limited knowledge. In the present study, the 
application of the PEA, an antibody-based proteomic strategy, resulted in the quantification of over 1,000 plasma protein 
changes in COVID-19 patients mostly with mild symptoms. Further analysis unveiled immunological signatures and several 
novel protein changes associated with a SARS-CoV-2 infection, their underlying diseases as well as antibody generation. In 
fact, our data demonstrated that COVID-19 patients with comorbidities shared plasma protein signatures that reflect their 
underlying immune and physiological responses, despite the heterogeneity of medical conditions. Furthermore, the 
characterization of long-term plasma protein responses resulted in the identification of novel potential biomarkers for post-
COVID-19 condition. Our data provides a valuable resource for the further functional characterization of novel players in a 
SARS-CoV-2 infection that could also lead to the development of novel biomarkers for the diagnosis and prognosis of COVID-
19. 

CHAPTER 5. Mass spectrometry proteomics characterization of plasma 
biomarkers for colorectal cancer associated with inflammation 

Once sample preparation protocols and bioinformatics analysis were set up and optimized with previous COVID-19 
studies, the second main part of the thesis focused on CRC. CRC biomarkers are urgently needed together with deeper 
understanding of the systemic response to CRC. In this chapter, LC-MS/MS proteomics was applied to plasma samples from 
CRC patients and healthy controls to characterize the protein changes caused by CRC development, progression and cancer-
associated inflammation. This multi-center study included samples from four different biobanks 3P–Medicine Laboratory, 
Medical University of Gdansk, Biobank HARC, Medical University of Lodz (Poland), Bank of Biological Material at Masaryk 
Memorial Cancer Institute (Czech Republic) and Leipzig Medical Biobank (Germany) and it was performed in collaboration 
with the IFB Laboratory of Mass spectrometry. 

This study was originally published in Biomarker Insights and is presented with minor modifications.: 
Urbiola-Salvador V, Jabłońska A, Miroszewska D, Kamysz W, Duzowska K, Drężek-Chyła K, Baber R, Thieme R, Gockel 
I, Zdrenka M, Śrutek E, Szylberg Ł, Jankowski M, Bała D, Zegarski W, Nowikiewicz T, Makarewicz W, Adamczyk A, 
Ambicka A, Przewoźnik M, Harazin-Lechowicz A, Ryś J, Macur K, Czaplewska P, Filipowicz N, Piotrowski A, Dumanski 
JP, Chen Z. Mass spectrometry proteomics characterization of plasma biomarkers for colorectal cancer associated 
with inflammation. Biomark. Insights. 19, 11772719241257739 (2024, in press). 

5.1. Introduction 

Colorectal cancer (CRC) is the third most incident malignancy and the second most deadly cancer worldwide 78. Despite 
the great advances in CRC treatment with recently developed immunotherapies, about 20–25% of diagnosed CRC patients 
present advanced cancer stages and metastasis that is linked to a 5-year survival rate lower than 10% and low therapeutic 
response 421,422. In contrast, diagnosis at early stages leads to reduced tumor-related mortality and a 90% 5-year survival 
rate after radical surgical resection 423. Apart from the disease stage at diagnosis, CRC prognosis depends on multiple factors 
such as location, genetic factors, molecular expression profiles, tumor immune infiltration, and inflammation 422. The low 
therapeutic response to immunotherapies such as immune checkpoint inhibitors may be caused by the influence of other 
non-targeted inflammatory and immunosuppressive mechanisms 52. Ńotably, cancer-associated inflammation is considered 
a well-established hallmark of cancer, especially in CRC 424. Inflammatory modulators including chemokines, cytokines, and 
growth factors influence the interactions between cancer cells and the tumor microenvironment driving tumor progression 
and the immune response 425. Moreover, CRC progression can promote systemic inflammation impacting other organs and 
facilitating metastasis 424. 
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Currently, the gold standard for CRC prevention is colonoscopy complemented with fecal occult blood tests 426. However, 
colonoscopy is expensive and has poor patient compliance, due to its invasiveness and risks, while stool-based tests have 
low sensitivity and specificity 114,427. Therefore, alternative, non-invasive, cost-effective, and easily measurable CRC screening 
strategies are urgently needed. Mass spectrometry (MS)-based proteomics approaches have been successfully applied to 
determine blood-based biomarkers of CRC development and progression 114. MS-based proteomics characterization of low-
abundance proteins in serum/plasma is limited by the high dynamic range of protein concentrations over nine orders of 
magnitude with 99% of the total protein content from only 20 abundant proteins 428. However, the technological evolution 
of high-resolution MS instruments such as time-of-flight (TOF) or Orbitrap provides the possibility to discover blood-based 
biomarkers with high sensitivity and specificity 429. 

Ńowadays, the most common blood protein biomarker used in clinical CRC diagnosis is carcinoembryonic antigen (CEA), 
but its accuracy requires improvement 430. Interestingly, untargeted tandem MS coupled with liquid chromatography (LC-
MS/MS) proteomics strategies could discover novel potential CRC biomarkers that can be validated by using targeted MS 
techniques as well as antibody-based assays 114. For instance, proteomics analysis discovered that several SERPIŃ family 
members are altered in patients with CRC and adenomatous polyps which were validated as potential diagnostic biomarkers 
by ELISA 431. Moreover, plasma proteomics analysis combined with neural network classification identified five candidate 
biomarkers to distinguish between CRC stages 432. Another glycoproteomics study detected novel diagnostic biomarkers 
includingElevated levels of complement C9 and fibronectin improved the diagnostic performance of a commercial CEA CRC 
biomarker 433. In addition, targeted proteomics analysis in a non-metastatic CRC cohort determined a five protein signature 
with efficient discrimination of CRC cases from healthy subjects 434. However, despite advances in CRC biomarker discovery 
and validation by proteomics, further studies are needed in larger cohorts to implement reliable biomarkers in clinical 
practice. 

The aim of this study was to discover novel plasma protein signatures involved in CRC development and progression by 
untargeted LC-MS/MS proteomics analysis. Importantly, significant changes in plasma protein levels were identified that 
were associated with cholesterol metabolism, members of the SERPIŃ family as well as increased levels of complement 
cascade proteins in CRC patients versus healthy subjects. Furthermore, high complement C5 levels were confirmed in the 
validation cohort, being a potential diagnostic CRC biomarker. Plasma protein levels of 11 proteins, including complement 
C8A and serpin family A member 4 (SERPIŃA4) were linked to cancer-associated inflammation, while 4 proteins, including 
C8A and C4B, distinguished early from advanced CRC stages. 

5.2. Materials and Methods 

5.2.1. Study cohorts and design 

This multi-center retrospective study included 36 patients with CRC surgery (age mean: 66.1 ± 11.6 years; 44.4% male) 
from June 2019 to April 2021 and 26 healthy subjects (age mean: 61.1 ± 10.5 years; 42.3% male) in the discovery cohort. 
Included patients were with positive colonoscopy and pathologist-confirmed malignant neoplasm. Patients with prior 
neoadjuvant therapy administration were excluded from the analysis. 69.4% (25 of 36) of diagnosed patients were with 
advanced CRC stages (III-IV) according to the Union for International Control of Cancer TŃM classification and 30.5% (11 of 
36) presented cancer-associated inflammation post-operatively assessed by pathologists. Blood samples of healthy subjects 
and CRC patients were obtained from Biobank HARC, Medical University of Ło dz  and the 3P–Medicine Laboratory, Medical 
University of Gdan sk. The independent validation cohort included 60 CRC patients (age mean: 61.8 ± 11.4 years; 51.7% 
male) without neoadjuvant therapy and 44 sex-and-age-matched healthy subjects. Serum samples were obtained from the 
Leipzig Medical Biobank, Germany and the Bank of Biological Material at Masaryk Memorial Cancer Institute, Czech 
Republic. The collection of whole blood samples was with sterile BD Vacutainer® K2EDTA tubes or Sarstedt S-Monovette® 
2.7 mL, K3 EDTA (LMB) before the CRC resection followed by centrifugation, aliquoting, and storage at -80°C until use. 

5.2.2. Sample preparation for mass spectrometry 

Proteins were extracted from plasma samples with lysis buffer (1% SDS, 50 mM DTT, 100 mM Tris-HCl pH 8.0) (Merck 
KGaA, Darmstadt, Germany) containing phosphatase and protease inhibitors (Thermo Fisher Scientific, Waltham, MA, USA) 
followed by an incubation at 95°C for 10 min. Protein concentrations were determined at 280 nm in a μDrop plate with a 
Multiskan Thermo Ńanodrop. Then, 100 μg of proteins were transferred to Microcon 10 kDa filters (Merck KGaA) and were 
processed based on the Filter Aided Sample Preparation (FASP) protocol 110. Briefly, three washes with 200 µl of urea buffer 
(8 M urea,100 mM Tris-HCl pH 8.5) at 10,000 rcf for 20 min at room temperature (RT) were applied to the protein mixtures. 
Free cysteines were alkylated by incubation in the darkness for 20 min at RT with 55 mM iodoacetamide (100 µl) in urea 
buffer (Merck KGaA). Samples were centrifuged at 10,000 rcf for 15 min and washed three times with urea (100 µl) and two 
times with digestion buffer (50 mM Tris-HCl pH 8.0). Afterward, the filters were transferred into new tubes and proteins 
were digested by incubation at 37°C with 1 μg of Sequencing Grade Modified Trypsin (Promega, Madison, WI, USA) in 60 µl 
of digestion buffer overnight. Then, the elution of peptides was performed with the same centrifugation conditions and 
washed two times with 125 and 100 µl digestion buffer. Ńext, 0.1% trifluoroacetic acid quenched trypsin activity. Peptide 
concentrations were measured as previously and 20 μg of peptides were desalted with STop And Go Extraction (STAGE) Tips 
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294 in Empore C18 extraction disks (3M, Ńeuss, Germany). Peptides were eluted with 60% acetonitrile and 1% acetic acid. 
Desalted peptides were dried in a SpeedVac at 45°C and samples were in storage at -20°C until analysis. 

5.2.3. LC-MS/MS analysis 

LC-MS/MS analysis of prepared samples was performed with a TripleTOF 5600+ mass spectrometer (SCIEX, 
Framingham, MA, USA) and with an EkspertMicroLC 200 Plus System (Eksigent, Redwood City, CA, USA). AB SCIEX Analyst 
TF 1.6 software was used to control the LC-MS/MS system. Samples were run in triplicates with 1.5 µg injected peptides in 
each technical replicate. Analyses were in a ChromXP C18CL column (3 μm, 120 A , 150 × 0.3 mm) at 5 µl/min and 35°C, for 
60 min with an 11–35%. acetonitrile gradient in 0.1% formic acid. TripleTOF 5600+ was set in data-dependent acquisition 
mode and the m/z range of the TOF MS survey scan was at 400-1200 Da with an accumulation time of 250 ms. The selection 
for collision-induced dissociation (CID) fragmentation was set to a maximum of top 20 precursor ions with +2 to +5 charges. 
The exclusion of precursor ions from reselection was for 5 s after two occurrences. Product ions spectra were acquired 
between 100 and 1800 Da with 50 ms accumulation time. 

5.2.4. MS data analysis 

Acquired raw SCIEX files were converted to mzML format with MSConvertGUI 3.0 and analyzed using PeaksStudio Xpro 
10.6 software (Bioinformatics Solutions, Waterloo, OŃ, Canada). Peptide sequence search was against the Homo sapiens 
UniProtKB/Swiss-Prot database (release 2022_03) for trypsin digested peptides with maximum 3 missed cleavages per 
peptide. Carbamidomethylation was as fixed post-translational modification (PTM), whereas Ń-terminal acetylation and 
methionine oxidation as variable PTMs. Peptide and protein identification was with a < 1% false discovery rate (FDR). Label-
free quantification was performed based on the integration of the peptide areas under the curve (AUC). 

5.2.5. Complement C5 validation 

Complement C5 serum concentrations were quantified in the validation cohort by an ELISA kit with a coated antibody 
to human C5 (Abcam ab125963, Cambridge, UK) commercially available, following manufacturer’s instructions. 

5.2.6. Proteomics data and statistical analysis 

Statistical analysis was performed with R (version 4.0.3) (R Foundation for Statistical Computing, Vienna, Austria) in 
RStudio (version 1.3.1093) (RStudio, PBC, Boston, MA, USA). Data preprocessing was performed by summarization of 
technical replicates with medians and logarithmic transformation of relative abundances. Proteins with missing values in 
over 50% of patients and 50% of healthy controls were filtered. Random forest imputation was applied to the remaining 
missing values with the “missForest” R package (version 1.5) followed by quantile normalization. Differences in protein 
levels between groups were analyzed by the general linear model regression approach with contrast analysis with the 
“emmeans” R package (version 1.6.2.1). First, for each protein, a general linear model was generated to fit its expression to 
determine significant changes in CRC patients compared to healthy volunteers including age as a confounding factor. Then, 
for each protein expression, a general linear model was generated including only CRC patients with the independent 
variables inflammation and tumor stage while sex was considered a confounding factor. FDR control was applied with the 
Benjamini & Hochberg correction. Significant changes were considered with FDR-adjusted p-value < 0.05. Point-biserial 
correlation of protein abundance with inflammation status or tumor stage was calculated with the built-in R function cor.test 
and correlation was significant with a p-value < 0.05. Principal Component Analysis (PCA) was performed using prcomp 
built-in R function and PCA visualization using “factoextra” R package (version 1.0.7). Functional annotation of biological 
process and cellular component GO terms was performed by a two-sided hypergeometric test with FDR correction using the 
Cytoscape cluGO plugin (version 2.5.7). Pathway enrichment analysis of KEGG terms supported by active subnetworks was 
applied with the R package “pathfindR” (version 1.6.3) using the STRIŃG database and FDR correction. The generation of 
graphics was with the R package “ggplot2” (version 3.3.5), with the exception of heatmaps generation by the R package 
“ComplexHeatmap” (version 2.6.2). The construction of the protein network was with Cytoscape (version 3.8.2) using the 
STRIŃG database and a 0.7 confidence cut-off. 

5.3. Results 

5.3.1. Identification and quantification of the plasma proteome of CRC patients using LC-
MS/MS 

To study the protein profile changes in blood involved in CRC development, we applied LC-MS/MS proteomics analysis 
to plasma samples of 36 CRC patients and 26 healthy controls. As a result, 322 proteins were identified with at least 1 unique 
peptide with FDR < 0.01, from which the majority of proteins were identified in both groups (Figure 5.1a). Interestingly, 
IgGFc-binding protein (FCGBP), which is a mucin responsible for innate immune defense in the intestine and is associated 
with CRC metastasis by promoting cell adhesion, was only identified in CRC patients 63. 
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Figure 5.1. LC-MS/MS analysis of plasma proteome from CRC patients and healthy controls. (a) Venn diagram of identified proteins in CRC 
patients and healthy individuals. (b) Representative scatter plots of log-transformed areas for the three technical replicates from a CRC 
patient (P1) with their corresponding Pearson correlation coefficients and p-values. (c) Abundance protein ranking plot with the mean of 
log-transformed areas from healthy subjects (red) and CRC patients (blue). 

After filtering proteins with a high % of missing values, 138 protein groups were analyzed with reliable quantification 
across the samples. The relative protein abundance was reproducible along technical replicates with high Pearson’s 
correlation coefficients (Figure 5.1b). LC-MS/MS analysis quantified proteins in a high dynamic range of concentrations 
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from high-abundance albumin in the range of mg/mL to chemokines such as C-X-C motif chemokine ligand (CXCL)-7 in the 
range of ng/mL (Figure 5.1c). 

Functional annotation of the identified proteins determined that the majority were from the extracellular organelles, 
blood, and lipoprotein microparticles, as well as the vesicle/vacuolar lumen (Figure 5.2a). However, proteins from the 
plasma membrane, cytoplasm, and nucleus, such as histone H4, were also detected that may circulate in the peripheral blood 
due to tissue damage and cell turnover. (Appendix III Table S2). Identified proteins were included in several biological 
processes such as blood coagulation, homeostasis, proteolysis, and several metabolic processes including cholesterol and 
fatty acid metabolism, vesicle-mediated transport, cell death as well as humoral immune and inflammatory responses 
(Figure 5.2b). Interestingly, over-represented biological process GO terms were associated with different humoral immune 
and inflammatory responses due to the presence of immunoglobulins, complement proteins, and some chemokines such as 
CXCL7 (Figure 5.2c, Appendix III Table S2). Overall, our proteomics analysis identified plasma proteins associated with 
different biological processes including immune responses and quantified 138 proteins in a high dynamic range of 
concentrations with high reproducibility. 
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Figure 5.2. Functional annotation of the identified plasma proteins. (a) Interaction network of over-represented cellular component Gene 
Ontology (GO) terms with an organic l1ayout. (b) Interaction network of over-represented GO terms of biological processes with an organic 
layout. (c) Amplification of the subnetwork of GO terms from immune and defense responses with a tree layout. 

5.3.2. CRC development causes protein plasma changes associated with the complement 
cascade and cholesterol metabolism 

To determine whether the plasma levels of quantified proteins differ in CRC patients versus healthy volunteers, PCA was 
performed. PCA showed a clear separation of plasma from CRC patients and healthy subjects, indicating that CRC 
development affects the protein plasma profiles in examined patients (Figure 2.3a). To unveil these protein changes, 
differential protein expression analysis was applied by linear regression modeling with FDR correction, resulting in 17 
proteins with enhanced levels and 20 decreased proteins in CRC patients versus healthy volunteers (Figure 5.3b, Appendix 
III Table S3). Among the differentially expressed proteins (DEPs), inter- ITIH3, leucine-rich alpha-2-glycoprotein (A2GL), C9, 
and LBP showed the highest levels in CRC patients, while APOA4, acid labile subunit (ALS), and kallikrein B1 (KLKB1) 
showed the lowest levels compared to healthy controls. ITIH3, a hyaluronan essential for multiple cellular processes, which 
transports and regulates hyaluronan turnover in the blood circulation, was found with the highest fold change. Unsupervised 
hierarchical clustering showed that these 37 DEPs separated CRC from control samples (Appendix III Figure S1). 

Pathway enrichment analysis of KEGG terms by active subnetworks revealed that complement and coagulation pathways 
were activated with elevated protein levels (C4B, C5, C1QB, and C9) in CRC patients (Figure 5.3c, Appendix III Table S4). 
Moreover, cholesterol metabolism, vitamin digestion, and adsorption were down-regulated in CRC patients, involving two 
apolipoproteins, APOA2 and APOA4 (Figure 5.3b-c). Both APOA2 and APOA4 are associated with obesity and 
hypercholesterolemia that are independent risk factors for CRC development 436,437. Similarly, the STRIŃG protein-protein 
interaction network showed the interaction between the complement proteins with elevated levels (Figure 5.3d). In 
addition, SERPIŃC1 was the most interconnected node linking complement proteins to other DEPs in the network. 
SERPIŃC1, also called antithrombin III, is the main inhibitor of blood coagulation which can attenuate inflammatory 
responses 438. Collectively, our analysis indicates that development of CRC causes plasma protein changes which are 
associated with complement cascade and cholesterol metabolism. 
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Figure 5.3. Colorectal cancer (CRC) development causes plasma protein changes involved in complement cascades and cholesterol 
metabolism. (a) Principal Component Analysis of CRC patients and healthy subjects using the relative abundances of all quantified proteins. 
(b) Volcano plot of statistical significance against fold-change of proteins between CRC patients and healthy individuals. Colored dots 
indicate statistically differentially expressed proteins (DEPs) calculated by the general linear model approach. (c) Dot plot of KEGG pathway 
enrichment combined with STRIŃG protein-protein interaction network analysis from DEPs between CRC patients and healthy subjects. (d) 
Protein-protein interaction network of DEPs between CRC patients and healthy individuals from STRIŃG database query with a 0.7 
confidence cut-off. The size of nodes indicates the degree of connectivity of the nodes. The red and blue dots/nodes represent up-regulation 
and down-regulation in CRC patients, respectively. FC, Fold Change; p, p-value; PC, Principal Component. 
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5.3.3. Plasma protein changes linked to cancer-associated inflammation in CRC patients 

Inflammation is a well-established hallmark of cancer that influences CRC progression. To analyze protein changes in 
plasma associated with inflammatory status, the protein levels were compared between CRC patients with cancer-associated 
inflammation (11 of 36 cases) and without. First, correlation analysis determined significant correlation of 18 proteins with 
cancer-associated inflammation, including 9 proteins correlated positively such as C8A, A2GL, and CERU, while another 9 
proteins including retinol-binding protein 4 (RET4) were correlated negatively (Figure 5.4a, Appendix III Table S5). 

 
Figure 5.4. Plasma protein changes induced by cancer-associated inflammation in CRC patients. (a) Heatmap of proteins with significant 
correlation with inflammatory status. Protein expression is transformed with a z-score by row normalization and distributed by hierarchical 
clustering. The correlation coefficients (right) indicate a positive/negative correlation for each protein. (b) Volcano plot of statistical 
significance against fold-change of proteins between CRC patients with inflammation and without inflammation. Dots indicate individual 
proteins and the red and blue dots represent significant up-regulation and down-regulation in CRC patients with inflammation, respectively. 

To determine the link between protein abundance and cancer-associated inflammation, the differential protein 
expression was evaluated by linear regression analysis. This analysis resulted in 11 DEPs that were previously identified 
with significant correlation (Figure 5.4b, Appendix III Table S6). Some downregulated proteins were SERPIŃ family 
members, e.g., SERPIŃA4 (KAIŃ) and SERPIŃD1 (HEP2). Ńoteworthy, SERPIŃA4 is an anti-angiogenic and anti-
inflammatory agent that was decreased in CRC patients versus healthy volunteers and its downregulation was common in 
inflammatory processes as well as in cancer 439.Additionally, C8A and IGHG2 may be related to cancer-associated 
inflammation thus promoting an exacerbated immune response in these patients. Collectively, this analysis determined 
plasma protein signatures in CRC patients linked to cancer-associated inflammation. 
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5.3.4. Evaluation of plasma protein signatures linked to CRC stages 

The main complication of CRC development is tumor progression and metastasis, resulting in increased CRC mortality. 
Therefore, CRC prognostic biomarkers are urgently needed. Plasma protein changes linked to CRC progression were 
determined by comparing protein levels in early-stage patients (I and II) versus late-patients (III and IV). Correlation analysis 
indicated that 5 proteins were correlated positively, while 6 proteins were correlated negatively (Figure 5.5a, Appendix III 
Table S7). Among them, enhanced fibrinogen alpha chain (FIBA) levels in late CRC stages and their association with distant 
metastasis were previously reported 440. Also, increased alpha-1-acid glycoprotein 2 (A1AG2) was linked to shorter survival 
rates in a CRC cohort 441. Similar to the previous comparison, the regression analysis showed that only were 4 DEPs (Figure 
5.5b). Among them, C8A and C4B may play a relevant role in CRC progression, while the immunoglobulin IGHG2 may be 
associated with the immune response in CRC early stages by promoting inflammation as enhanced levels were linked to 
cancer-associated inflammation. 

Figure 5.5. Plasma protein expression differences between early and late stages of CRC. (a) Heatmap of proteins with significant correlation 
with tumor stage. Protein expression is transformed with a z-score by row normalization and distributed by hierarchical clustering. The 
correlation coefficients (right) indicate a positive/negative correlation for each protein. (b) Volcano plot of statistical significance against 
fold-change of proteins between CRC patients with early tumor stage and with late tumor stage. Dots indicate individual proteins and the 
red and blue dots represent significant up-regulation and down-regulation in CRC patients with late tumor stage, respectively. 

5.3.5. Complement protein C5 plasma levels are enhanced in CRC patients 

Among the complement proteins, we found elevated C5 levels in plasma of CRC patients versus healthy volunteers by 
LC-MS/MS analysis (Figure 5.2b, 5.6a). To validate this finding, C5 concentrations were measured by ELISA in an 
independent validation cohort, including 60 CRC patients and 44 healthy subjects (Figure 5.6b). ELISA results confirmed LC-
MS/MS findings. Ńoteworthy, a peptide from C5a was also enhanced in CRC patient’s plasma (Figure 5.6c). In fact, C5 
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proteolytic degradation promotes the release of the anaphylatoxin C5a that is an inflammatory mediator (Figure 5.6d) 442. 
Collectively, the enhanced plasma level of complement C5 is a novel promising biomarker for CRC diagnosis and may 
promote the release of the pro-inflammatory C5a. 

 
Figure 5.6. Complement protein C5 is a potential diagnostic biomarker for CRC. Box and whisker plots of (a) log-transformed areas of C5 in 
the discovery cohort calculated the significance by general linear model approach, (b) C5 concentrations measured by ELISA in the 
validation cohort calculated by Student t-test, and (c) log-transformed areas of a quantified peptide from C5a with the sequence 
AFTECCVVASQLR in the discovery cohort for CRC patients and healthy subjects calculated by Student t-test. * indicates statistical 
significance with a p-value < 0.05, and *** indicates a p-value < 0.001. 

5.4. Discussion 

In this study, we performed LC-MS/MS analysis to characterize the protein changes in plasma involved in CRC 
development by unbiased proteomics characterization of CRC patients and healthy individuals. Ńot only secreted proteins 
were detected but also released intracellular proteins from damaged tissues and cell turnover. Moreover, we quantified 138 
proteins with high reproducibility and a high dynamic range of concentrations from ng/mL to mg/mL. Deep plasma 
proteomics characterization is challenging because high-abundance proteins, such as albumin and immunoglobulins hinder 
low-abundance protein identification . Immunodepletion of high-abundance proteins is a common strategy to reduce high-
abundance protein levels 443. However, immunodepletion could lead to the removal of non-targeted proteins associated to 
albumin and other depleted proteins that have been previously implicated as potential biomarkers 443,444. In our pilot study, 
FASP combined with STAGE tips method prioritized the quantification reproducibility over the potential increase in the 
number of identifications by immunodepletion. Therefore, FASP combined with STAGE tips method was selected to perform 
proteomics analysis in this study. 

Several plasma proteins were identified with significant changes in CRC patients compared to healthy individuals. These 
findings were consistent with previously published data performed with LC-MS/MS as well as antibody-based techniques 
including ELISA and Western blot 431–434,445–447. For instance, ITIH3, the DEP with the highest fold change, was reported as 
increased in CRC patients’ serum and serum of a CRC mice model 432,434,448, while another study showed opposite results 445. 
Despite the role of ITIH3 in CRC development has not been determined yet, ITIH4 was found upregulated in CRC tissue 
versus normal-matched tissue and seems to be involved in the extracellular matrix remodeling and the systemic 
inflammatory response during CRC development 445. Moreover, an increased level of several SERPIŃ family members was 
observed in the examined CRC cohort, which is consistent with previously reported data 431,446. Among them, SERPIŃC1 
might play a central role in the systemic response to CRC as it is the most interconnected node in the protein-protein 
interaction network. Moreover, SERPIŃC1 downregulation may avoid its suppressive tumor activity and inhibit tumor 
angiogenesis and proliferation 431. Interestingly, another family member, SERPIŃF1 also revealed a link to cancer-associated 
inflammation. It was reported that this antiangiogenic protein was downregulated in CRC tissue and sera and its low levels 
were associated with a poor survival prognosis 447. 

Importantly, in this study, the increased level of the complement cascade and its components were found in CRC patients. 
This indicates that these proteins might play a relevant role in CRC development. Enhanced level of the complement proteins 
such as C9 433, complement component 4 binding protein alpha and beta (C4BPA and C4BPB) 431,449 was previously reported 
in CRC patients while increased C1QB is novel. C1QB was found upregulated in tumor tissue versus normal-matched tissue 
but not in CRC patients’ plasma 450. Another novel complement protein with enhanced plasma level is C4B, which is a non-
enzymatic component of C3/C5 convertases and was reported as upregulated in the serum of ApcMin/+ CRC mice versus wild-
type mice 448. In our study, increased C4B was found in advanced-stage CRC patients, suggesting that this complement 
protein might play a key role in the disease progression. In addition to C4B, another member of the complement cascade, 
C8A, was also enhanced in the advanced stages of CRC patients. C8A is a key constituent of the membrane attack complex 
that regulates the pore formation in target cells and regulates the underlying innate and adaptive immune responses 442. The 
high C8a expression was previously reported in CRC metastasis compared to the primary tumor which supports its potential 
role in CRC progression 451. Moreover, the C8A level was also enhanced in patients with cancer-associated inflammation, 
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suggesting that this complement protein is linked to the systemic inflammation promoted by CRC to facilitate metastasis 
from the primary tumor. More importantly, enhanced C5 was found in CRC patients’ plasma, which was confirmed in the 
validation cohort. Increased C5 expression in colon tissue versus normal-matched tissue and its association with metastasis 
was recently reported in another study 451. Proteomics analysis also revealed an enhanced level of a peptide corresponding 
to the C5A anaphylatoxin in examined CRC patients. Although there were no previous reports associating C5A with CRC, 
another complement anaphylatoxin, C3A, was proposed as a potential CRC diagnostic biomarker 452. Moreover, several 
studies suggest that C5A may promote CRC tumorigenesis, metastasis, and immunosuppressive microenvironment within 
the tumor 452–454. However, further validation studies are needed to confirm the association between C5A plasma levels and 
CRC. Another enriched pathway in CRC patients was cholesterol metabolism, with two downregulated apolipoproteins 
APOA2 and APOA4, that were previously reported 455. It was found that APOA2 polymorphisms were associated with CRC 
prognosis and might play a relevant role in disease development and progression 456. These proteins were also related to 
metabolic syndrome which is a well-established CRC risk factor 457. 

Interestingly, our analysis reported novel plasma protein changes associated with CRC development. For instance, serum 
amyloid A4 (SAA4), one of the major acute-phase reactants, was enhanced in CRC patients versus healthy individuals. The 
increased circulating levels of SAA have been linked to several inflammatory conditions including neoplasia 458. SAA4 was 
only detected in CRC tissue but not in normal tissue, suggesting a potential role in tumorigenesis 459. Another enhanced 
acute-phase response protein was LBP, which promotes cytokine release in response to bacterial lipopolysaccharide 460. 
Ńoteworthy, our recently published study demonstrated the increased level of several pro-inflammatory cytokines in the 
same CRC cohort by proximity extension assay 461. It was previously found that LBP polymorphisms were associated with 
CRC susceptibility 462 and high serum levels were associated with obesity 463. 

Our analysis identified novel links between plasma protein levels in CRC patients and cancer-associated inflammation. 
The secreted glycoprotein A2GL, also called LRG1, was upregulated in CRC patients with positive inflammatory status and 
overall CRC patients versus healthy individuals 431. LRG1 was also overexpressed in CRC tissue where it induced cancer 
proliferation 464. Hence, it has been suggested that LRG1 plays an important role in CRC progression and may have an 
exacerbated pro-inflammatory effect in patients with cancer-associated inflammation due to its link to the acute-phase 
response 465. Another enhanced protein in positive-inflammation CRC patients was CERU while higher levels in CRC patients 
versus healthy individuals were revealed in another study 466. The metalloprotein CERU binds copper in plasma and is 
associated with inflammatory responses by promoting nitric oxide synthase activity and cytokine secretion 467. On the 
contrary, this study found low levels of the retinol-binding protein (RBP)-4, which is related to cancer-associated 
inflammation. Downregulation of RBP4 in CRC patients versus healthy individuals in serum and tumor tissue was previously 
reported 468. Other adipokines with antitumorigenic effects such as adiponectin (APOD) was also reduced in cancer patients 
and RBP4 may play a role in the reduction of inflammation 469. A lower level of APOD, a protein associated with cancer-
associated inflammation, was also observed in our cohort. This blood transporter was inversely correlated with CRC 
tumorigenesis and was associated with early stages of CRC, however, further functional studies are needed to elucidate its 
role in CRC development 470. 

A comparison early-stage and late-stage CRC patients revealed four potential biomarkers associated with cancer 
progression, including C4B, C8A, APOC2, and IGHG2. The lipoprotein metabolism regulator, APOC2, was found elevated in 
advanced stages of cancer for the first time, while it was previously described as a potential biomarker of CRC development 
432. On the contrary, IGHG2 plasma levels were increased in CRC early stages and in patients with cancer-associated 
inflammation. The IGHG2 expression was previously detected enhanced in cancer tissues of CRC patients but not in plasma 
471. Further analysis in larger cohorts will validate our findings to determine the suitability of these potential biomarkers to 
predict the cancer stage and the association with inflammation. 

By using LC-MS/MS proteomics analysis, we quantified 138 plasma proteins in CRC patients and healthy subjects. 
However, the high dynamic range of proteins limited the quantification of proteins with low abundance and statistical 
analysis was only applied to those proteins with reliable quantification. Moreover, due to the relatively low number of 
patients in the discovery CRC cohort, further validation of the novel potential biomarkers in a larger cohort by targeted MS 
techniques or other quantitative methods such as antibody-based strategies is required. To evaluate the application of these 
biomarkers in early CRC detection, further validation with a cohort including a higher percentage of early-stage patients is 
in the plan. Further studies using more advanced LC-MS/MS instrumentation that combines nanoparticle protein coronas 
with high-resolution Orbitrap mass spectrometer DIA analysis (DIA) mode followed by MRM analysis will improve the low-
abundance protein detection 472. The discovery cohort was also limited by the higher percentage of women, while CRC 
incidence is higher in men. Finally, CRC family history information and molecular expression profiles of the tumor were 
missing, which are relevant factors in CRC development and progression. 

In this study, LC-MS/MS plasma proteomics application in CRC patients identified novel protein signatures compared to 
healthy subjects including complement proteins as well as proteins such as SAA4 and LBP associated with pro-inflammatory 
conditions. Importantly, we confirmed the enhanced levels of C5 in patients of a validation cohort as a potential diagnostic 
biomarker of CRC. Moreover, several proteins linked to cancer-associated inflammation, such as LRG1, CERU, RBP4, and 
APOD were identified. Plasma level of several proteins, including C4B, C8A, APOC2, and IGHG2 that may be served as 
potential early detection biomarkers in clinics to improve patient care after further validation in larger cohorts. 
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CHAPTER 6. Plasma protein changes reflect colorectal cancer 
development and associated inflammation 

In this chapter, similarly to COVID-19 studies, PEA was applied to plasma samples from CRC patients and healthy controls 
from the same biobanks as in the previous chapter to characterize the protein changes caused by CRC development, 
progression, and cancer-associated inflammation. This study resulted in a published article in Frontiers of Oncology and is 
presented with minor modifications: 
Urbiola-Salvador V, Jabłońska A, Miroszewska D, Huang Q, Duzowska K, Drężek-Chyła K, Zdrenka M, Śrutek E, 
Szylberg Ł, Jankowski M, Bała D, Zegarski W, Nowikiewicz T, Makarewicz W, Adamczyk A, Ambicka A, Przewoźnik M, 
Harazin-Lechowicz A, Ryś J, Filipowicz N, Piotrowski A, Dumanski JP, Li B, Chen Z. Plasma protein changes reflect 
colorectal cancer development and associated inflammation. Front. Oncol. 13, 1158261 (2023). 

6.1. Introduction 

Colorectal cancer (CRC) is the third most common malignancy and the second most lethal cancer, causing 935,000 
cancer-related deaths in 2020 78. CRC prognosis depends mainly on the tumor stage, location, and time of detection. However, 
despite the huge progress in cancer research, a large number of CRC cases are diagnosed at the advanced stage where cancers 
are aggressive, malignant, and metastatic 422. 

Currently, the most commonly-used diagnostic tools for CRC screening and prevention include colonoscopy and flexible 
sigmoidoscopy, as well as the guaiac-based fecal occult blood test (gFOBT) or the immunochemical fecal occult blood test, 
also known as the fecal immune test (FIT) 426. The traditional stool-based tests, such as gFOBT and FIT, have low sensitivity 
and specificity 473, while colonoscopy and sigmoidoscopy, despite the high sensitivity, have relatively low compliance, high 
cost, and are invasive which limits their efficacy in a population screening programs 427. Therefore, alternative, non-invasive, 
and efficient screening strategies to improve the early detection of cancers are urgently needed. Until now, several potential 
blood-based protein biomarkers for CRC screening and cancer prevention have been reported, including methylated Septin9 
474, extracellular vesicle microRŃAs 475, and cell-free circulating DŃA 476, but all lack the sensitivity and/or specificity for use 
as a stand-alone marker. 

Advances in proteomic-based technologies in the last decade have expanded the number of candidate biomarkers and 
led to a better comprehension of the CRC progression as well as the identification and characterization of related molecular 
signatures. The most recent advancement of Proximity Extension Assay (PEA) allows the quantification of over 3,000 
proteins from low amounts of a sample by the combination of DŃA-conjugated antibodies and next-generation sequencing 
(ŃGS) 174. Application of the PEA technology has led to the identification of carcinoembryonic antigen (CEA) as one of the 
best-studied blood-based prognostic biomarkers used in clinical practice 477–479. CEA is expressed in the embryonic 
endodermal epithelium, colorectal cancer, and other malignancies, such as inflammatory bowel disease (IBD), peptic ulcer, 
and pancreatitis 480. CEA is a promising plasma biomarker for the detection of CRC with high specificity and sensitivity 479,481, 
however, due to the limited organ specificity 482, it is not the best sole biomarker for population-based screening, yet it might 
be useful in CRC recurrence monitoring 483 and metastasis 484. Currently, the trend in biomarkers discovery is to focus on the 
biomarker panels rather than on a single-target protein as the broader spectrum of the analysis may help to address the 
cancer prognosis and detection more precisely. 

It was recently reported that two various multimarker panels consisting of five circulating proteins might be used as an 
efficient tool for the early and late-stage detection of CRC, including advanced adenomas, or in the prediction of overall 
survival in Germany and Chinese cohorts 48,485. In a recent study, Harlid et al. (2021) showed that fibroblast growth factor 
(FGF)-21 was associated with early, but not late stages of colon cancer, while pancreatic prohormone (PPY) was a promising 
biomarker for rectal cancer detection 486. However, neither FGF21 nor PPY could be used as stand-alone biomarkers for 
colon or rectal cancer but might be used as an efficient tool to discriminate between different subtypes of CRC. Therefore, 
there is an urgent need for the identification of a reliable blood-based biomarker panel that would detect the early stages of 
CRC as well as assesses the prognosis at the population-based screening. 

Both chronic inflammation, such as IBD, and sporadic, cancer-associated inflammation are well-known as key factors in 
CRC progression and development. Inflammation alters the communication between a variety of cell types, including innate 
and adaptive immune cells, epithelial cells, and stem cells. These intricate networks of cytokines, growth factors, receptors, 
and other molecules interaction result in either tumor-promoting or inhibiting environment 425. Thus, in the development 
of plasma biomarkers for CRC diagnosis, prognosis, and immunotherapy, the inflammatory status is essential. 

The purpose of our study was to identify the protein expression changes in the plasma of CRC patients compared to 
healthy controls as well as between the early and late stages of CRC and inflammatory status. Therefore, an inflammation 
panel including 368 proteins was selected to be detected in this study. We hypothesized that CRC development, tumor stage, 
and inflammation-caused changes in protein level will be reflected in the circulating blood and as such, we would be able to 
obtain a panel of biomarkers with potential translation into clinics to improve patient care. In this study, we quantified the 
plasma protein profiles derived from 38 CRC patients and their age- and sex-matched 38 healthy subjects using the PEA 
technology and protein panels consisting of 368 oncology- and 368 inflammation-related protein biomarker candidates. We 
quantified 690 proteins, among which 78 differentially expressed proteins (DEPs), were elevated and 124 DEPs were 
reduced in patients with CRC. We found protein signatures associated with cytokine interactions, oncogenic signaling 
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pathways, exacerbated apoptosis, as well as metabolism reprogramming. Additionally, we determined protein changes 
linked to cancer-associated inflammation and novel potential prognostic biomarkers associated with tumor stages. Linear 
regression model analysis revealed that carbonic anhydrase (CA11), CD276, colony-stimulating factor 3 (CSF3), and 
interleukin 12 receptor subunit beta 1 (IL12RB1), were positively associated with inflammatory status, whilst amyloid beta 
precursor protein binding family B member 1 interacting protein (APBB1IP) and CXCL6 were negatively associated. 
Moreover, linear regression model analysis of tumor stage indicated high plasma levels of Fms-related tyrosine kinase 4 
(FLT4), MAŃSC domain-containing protein 1 (MAŃSC1), and lysophosphatidic acid (LPA) phosphatase type 6 (ACP6), that 
could be used as potential prognostic biomarkers for advanced CRC. In contrast, high levels of interferon γ (IFŃG), 
interleukin (IL)32, and IL17C in early CRC stages indicate that these proteins can discriminate between early and late stages 
patients. Additionally, IFŃG is proposed as a potential biomarker for the early detection of CRC. 

6.2. Materials and Methods 

6.2.1. Study cohort 

The study was retrospective and consisted of 38 patients who underwent CRC surgery (mean age: 66.7 ± 12.3; 42.1% 
male) between June 2019 and April 2021 and 38 age- and sex-matched healthy subjects. All CRC patients had a positive 
colonoscopy and pathology-confirmed malignant neoplasm of the rectum or colon. Among them, 63.2% (24/38) were 
diagnosed with late-stage CRC (III-IV) according to the Union for International Control (UICC) TŃM classification and 28.9% 
(11/38) had inflammation according to the pathologist assessment. Samples collected from CRC patients and healthy 
subjects were obtained from the 3P–Medicine Laboratory, Medical University of Gdansk 487 and Biobank HARC, Medical 
University of Lodz, respectively. Whole blood samples were collected into sterile BD Vacutainer® K2EDTA tubes during the 
day of the planned CRC resection, centrifuged, aliquoted plasma and serum, and stored at -80°C until use. 

6.2.2. Protein profiling 

Plasma proteins were analyzed using the multiplex PEA technology (Olink® Explore 384-Oncology and -Immunology 
panel, Olink Proteomics, Uppsala, Sweden). Briefly, the PEA technology is a dual recognition approach based on matched 
pairs of oligonucleotide-labeled antibodies that bind to their target proteins. Once the target proteins are bound, the 
oligonucleotides brought into proximity, hybridize and are detected and quantified by using ŃGS 174. PEA quantifies a large 
number of proteins (> 3,000) with good precision, using a minimal volume of plasma or serum samples, and without loss of 
specificity and sensitivity. The protein levels are presented in the normalized protein expression (ŃPX) values on a log2 
scale. A high protein concentration corresponds to a high ŃPX value. For quality assessment and validation of the PEA 
technology, the protein level of ACP6 was measured by ELISA, while for CSF3, IFŃG, IL6, CXCL9, and CCL23 were determined 
by using Luminex MAGPIX technology. 

6.2.3. Statistical analyses 

All statistical analyses were performed in RStudio (version 1.3.1093) using R (version 4.0.3). First, proteins were filtered 
when the quality control was negative or the calculated ŃPX values were below the respective protein limit of detection 
(LOD) in at least 50% of samples from one of the study groups. The remaining ŃPX values below the LOD were imputed with 
the respective LOD/√2. Moderated t-test from the R package “limma” (version 3.46.0) was used to test differential protein 
abundance between CRC patients and healthy subjects. Additional analysis was performed using the general linear model 
regression approach with analysis of contrasts using the R package “emmeans” (version 1.6.2.1). A general linear model was 
fitted to the expression of each protein in all CRC patients using tumor stage and inflammation as independent variables, 
and sex as a confounding factor. The false discovery rate (FDR) was determined using the Benjamini & Hochberg correction. 
Proteins were considered differentially expressed when FDR adjusted p-value < 0.05. The built-in R function cor.test was 
used to calculate the point-biserial correlation between protein expression and tumor stage or inflammation status, the p-
value < 0.05 was considered significant. gene set enrichment analysis (GSEA) with Gene Ontology (GO) terms was performed 
using ClusterProfiler (version 4.6.0), while KEGG pathway enrichment analysis via active subnetworks from STRIŃG 
database was conducted using “pathfindR” (version 1.6.3), with FDR < 0.05. “ggplot2” (version 3.3.5) was used for graphics 
generation, excluding heatmaps that were generated using “ComplexHeatmap” (version 2.6.2). The hierarchical clustering 
(Euclidean distance) was implemented to visualize the patterns of DEPs among samples after the z-score transformation of 
ŃPX values; DEPs were split by k-means clustering. 

6.3. Results 

6.3.1. CRC development causes cytokine and oncogenic signaling pathway changes in plasma 

To determine the changes in the protein profiles in peripheral blood caused by CRC development, we performed plasma 
protein analysis by using PEA technology. Out of the total 736 proteins from the Inflammation and Oncology Explore panels, 
after removing repetitions in the panels and after removal of proteins with low detection rates among the samples, 690 
proteins were quantified. Among them, 78 proteins were elevated and 124 were reduced in the 38 CRC patients compared 
with their age- and sex-matched healthy controls (Figure 6.1a, Appendix IV Figure S1a and Table S1). Of the elevated DEPs, 
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dipeptidase 2 (DPEP2), hydroxyacylglutathione hydrolase (HAGH), and agouti-related neuropeptidase (AGRP) as well as 
downregulated DEPs as neutrophil cytosolic factor 2 (ŃCF2), epidermal growth factor-like protein 7 (EGFL7), and 
ectonucleotide pyrophosphatase/phosphodiesterase family member 5 (EŃPP5) were the DEPs with the most statistical 
difference. In line with previous studies which were carried out with different technologies for protein detection and 
quantification 484,488–493,high plasma levels of AGRP, FGF21, midkine (MDK), C-C motif chemokine ligand (CCL)-20, IL6, and 
CSF3 as well as reduced ribonucleotide reductase regulatory TP53 inducible subunit M2B (RRM2B) on plasma level of CRC 
patients were also identified in our study. Importantly, we found novel protein changes including high levels of oncogenic 
proteins such as R-Spondin 3 (RSPO3) and secernin 1 (SCRŃ1) as well as low levels of tumor suppressors such as Ret proto-
oncogen (RET) and Rho guanine nucleotide exchange factor 12 (ARHGEF12) in CRC patients. These results suggest the 
association between plasma protein levels and protein expression within the tumor microenvironment (TME). 

To investigate the involved pathways and the complex protein-protein interactions among these DEPs, KEGG enrichment 
analysis via active subnetworks was performed. Plasma protein changes were mainly associated with the cytokine-cytokine 
receptor interaction, including high plasma level of T-cell chemoattracting chemokine CXCL9 and the immune cell 
chemoattractant CCL23, as well as several signaling pathways including mitogen-activated protein kinase (MAPK), Ras, 
tumor necrosis factor (TŃF), nuclear factor-κB (ŃF-κB), and IL17 signaling pathways (Figure 6.1b-c, Appendix IV Table S2). 
Ńotably, proteins involved in Th17 cell differentiation were upregulated in CRC patients, suggesting an active role of this T-
cell helper subtype in CRC development. Moreover, proteins related to non-fatty liver disease (ŃAFLD), a disease previously 
associated with CRC risk 494, were enriched (Figure 6.1b, Appendix IV Table S1). At the same time, high levels of apoptosis-
associated proteins, CASP8 and BH3 interacting domain death agonist (BID) were discovered, with BID having the second 
highest fold change in the comparison (Figure 6.1a-c). To reveal possible mechanisms of cancer development, DEPs were 
further evaluated by using GSEA. This analysis revealed that the GO terms including oxidative phosphorylation, aerobic 
respiration, respiratory electron transport chain, and ATP synthesis coupled electron transport in mitochondria were 
enriched in CRC patients (Appendix IV Figure S1b and Table S3). Moreover, other metabolic proteins were highly elevated in 
CRC patients including HAGH and DPEP2 (Figure 6.1c) which may reflect the metabolism reprogramming due to CRC 
tumorigenesis, a well-known hallmark of cancer 495. 

Ńext, to distinguish which of the protein changes were a consequence of an altered secretion from a certain type of cells 
and which were a result of destructed tissues or cells released during CRC tumorigenesis, from the 202 DEPs, 50 proteins 
were identified in the human blood secretome from Human Protein Atlas, including cytokines that modulate the immune 
responses within the TME, such as IFŃG, IL6, IL15, CCL20, CXCL9, and CCL23 (Appendix IV Table S4). Some of these cytokines 
were previously found with high plasma levels in CRC such as pro-inflammatory cytokine IL6 which is also required for Th17 
differentiation 491, the pro-inflammatory MDK involved in multiple biological processes 484, and the chemoattractant of B- 
and T-cells CCL20 490, whereas the detected IFŃG is a well-recognized pro-inflammatory and antitumorigenic protein 496. 
Interestingly, the elevated plasma levels of the chemoattractants CXCL9 and CCL23 in CRC patients were reported for the 
first time in our study. These results suggest that plasma protein changes can reflect the variety of altered processes involved 
in tumorigenesis. Collectively, CRC development causes protein changes in plasma that are linked to several signaling 
pathways, cytokine interactions of underlying immune responses, and altered metabolism. 
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Figure 6.1. Colorectal cancer (CRC) development causes cytokine and oncogenic signaling pathway changes in plasma. (a) Volcano plot of 
statistical significance against fold-change of proteins between CRC patients and healthy controls. Dots indicate individual proteins and the 
red and blue dots represent significant up-regulation and down-regulation in patients, respectively. (b) Ńetwork of KEGG pathway 
enrichment analysis combined with STRIŃG protein-protein interaction network analysis. Green and red proteins indicate significant up-
regulation and down-regulation, respectively. (c) Box and whisker plots of selected DEPs not previously reported associated with CRC. * 
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indicates statistically significant with an adjusted p-value < 0.05, ** indicates an adjusted p-value < 0.01, and *** indicates an adjusted p-
value < 0.001,DEP, differentially expressed protein; FC, fold change, ŃPX; normalized protein expression. 

6.3.2. Cancer-associated inflammation alters the plasma protein expression in CRC patients 

It is well-known that chronic inflammation may contribute to cancer development. To determine plasma protein changes 
related to inflammatory status in CRC patients, we analyzed DEPs among patients with and without inflammation (11 and 
27 cases, respectively). Correlation analysis revealed 56 proteins significantly correlated with inflammation, among which 
7 proteins, CA11, CD276, CSF3, IL3RA, IL12RB1, MILR1, and SEMA4C were positively correlated, while 46 proteins including 
ACP6, APBB1IP, CXCL6, and DCXR were correlated negatively (Figure 6.2a, Appendix IV Table S5). Among them, elevated 
IL12RB1 and reduced DCXR showed the highest correlation with inflammatory status (Figure 6.2a, Appendix IV Table S5). 
To confirm the association between protein expression and inflammation, a linear regression analysis was used to determine 
the differential expression of these proteins. As a result, 26 DEPs were identified which were significantly correlated in the 
previous analysis (Figure 6.2b, Appendix IV Table S6). 

KEGG pathway enrichment analysis demonstrated that the DEPs were mainly assigned to cytokine-cytokine interaction, 
IL17 and Th17 cell differentiation, and Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling 
pathways, as well as pentose and glucuronate conversion (Appendix IV Table S7). It has been well documented that Th17 
cells play an essential role in inflammation via the production of pro-inflammatory cytokines IL17A, IL17F, IL22, and IL21. 
Th17 cell activity is also associated with an increased risk of CRC tumorigenesis 497. Among the DEPs involved in the IL17, 
Th17 cell differentiation and JAK-STAT signaling pathways, elevated levels of CSF3 and reduced CXCL6 were previously found 
in the serum of CRC patients 492,498, while our study also demonstrates their association with cancer-associated inflammation 
(Figure 6.2a-c). Interestingly, CSF3 is involved in inflammation by inducing bone-marrow neutrophil differentiation and its 
high levels are related to CRC tumorigenesis 492. Moreover, we report, for the first time, the association of IL12RB1, CA11, 
CD276, and APBB1IP with cancer-associated inflammation (Figure 6.2c). Accordingly, IL12RB1 and CSF3 were detected with 
high plasma levels in the whole CRC patients compared with healthy controls (Figure 3.1a, Appendix IV Table S1). It is worth 
noting that IL12RB1, CD276, and APBB1IP are involved in cancer surveillance, inhibition of T-cell mediated responses, and 
T-cell recruitment, respectively 499–501, whereas CA11 may induce proliferation and invasion of gastrointestinal tumors 502. 
(Figure 6.2c). In summary, these results suggest that inflammation in CRC patients can influence plasmatic protein levels. 
Furthermore, these proteins may be useful indicators of cancer-associated inflammation that may complicate the outcome 
of CRC patients. 
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Figure 6.2. Plasma protein changes induced by cancer-associated inflammation in CRC patients. (a) Heatmap of proteins with significant 
correlation with inflammation status. Protein expression is transformed with a z-score by row normalization and distributed by hierarchical 
clustering. The correlation coefficients (right) indicate a positive/negative correlation for each protein. (b) Volcano plot of statistical 
significance against fold-change of proteins between CRC patients with inflammation and without inflammation. Dots indicate individual 
proteins and the red and blue dots represent significant up-regulation and down-regulation in CRC patients with inflammation, respectively. 
(c) Box and whisker plots of selected DEPs not previously associated with cancer-related inflammation in CRC patients. *: adjusted p-value 
< 0.05, **: adjusted p-value < 0.01. 
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6.3.3. Determination of potential plasma biomarkers associated with CRC stages 

The main cause of a patient’s death due to CRC is tumor growth and its increased invasiveness, resulting in metastasis. 
Therefore, it is crucial to find prognostic biomarkers for CRC progression. We determined the plasma protein changes 
associated with CRC advance by the comparison of patients with early (I and II) and late (III and IV) stages of CRC. The 
correlation analysis showed that 13 proteins, ACP6, CCL23, C-type lectin domain family 4 member G (CLEC4G), FLT4, IL1R2, 
IL6, MAŃSC1, marginal zone B and B1 cell-specific protein (MZB1), S100A12, SCGB1A1, SMOC2, TXŃDC15, and WFIKKŃ2 
were positively correlated with tumor stage, whereas 7 proteins, including IFŃG, IL32, integrin subunit alpha 11 (ITGA11), 
ITGAV, selectin P ligand (SELPLG), trefoil factor (TFF)-2, and TMPRSS15 were correlated negatively (Figure 6.3a). Among 
them, FLT4 showed the best prognostic performance for late-stage CRC with the highest correlation coefficient (Figure 6.3a, 
Appendix IV Table S8). The elevated plasma FLT4, also named Vascular Endothelial Growth Factor Receptor 3 (VEGFR3) in 
the late stage of CRC may be associated with VEGF-mediated lymphangiogenesis and angiogenesis. 

Similarly to the analysis with inflammatory status, the regression analysis resulted in fewer DEPs than correlated 
proteins. This analysis revealed that ACP6, FLT4, and MAŃSC1 were elevated in the late stages of CRC, while IL17C, IL32, and 
IFŃG were elevated in the early stages (Figure 6.3b-c, Appendix IV Table S9). Ńotably, the enzyme ACP6 which is involved in 
phospholipid metabolism by hydrolysis of LPA was negatively associated with inflammatory status, suggesting that ACP6 
may play a role in both inflammation and CRC progression (Figure 6.3d). Taken together, these results indicate that ACP6, 
FLT4, and MAŃSC1 might be potential prognostic markers for advanced CRC. Ńotably, MAŃSC1 and ACP6 have not been 
previously reported to be associated with CRC development. Moreover, the pro-inflammatory cytokines IL17C, IL32, and 
IFŃG were elevated in the early stages of CRC tumorigenesis. Importantly, IFŃG levels were elevated in CRC patients 
compared to healthy subjects as well as in the early stages (Figure 6.3d). Therefore, IFŃG can be a novel potential biomarker 
for the early detection of CRC that may indicate an enhanced anti-tumor activity in the early stages. 
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Figure 6.3. Plasma protein expression differences between early and late stages of CRC. (a) Heatmap of proteins with significant correlation 
with tumor stage. Protein expression is transformed with a z-score by row normalization and distributed by hierarchical clustering. The 
correlation coefficients (right) indicate a positive/negative correlation for each protein. (b) Volcano plot of statistical significance against 
fold-change of proteins between CRC patients with early tumor stage and with late tumor stage. Dots indicate individual proteins and the 
red and blue dots represent significant up-regulation and down-regulation in CRC patients with late tumor stage, respectively. (c) Box and 
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whisker plots of DEPs that are novel potential prognostic biomarkers associated with cancer stages in CRC patients. *: adjusted p-value < 
0.05. D Venn diagram with the differentially expressed proteins for each comparison: CRC patients vs. control, Inflammation vs. Ńon-
inflammation, and Early vs. Late. Black arrows indicate the proteins of interest that are in common between comparisons. Red and blue 
arrows indicate up-regulation and down-regulation for the specified group, respectively. C, control; Inf., inflammation; Ńon-Inf., non-
inflammation; P, patient. 

6.3.4. Validation of identified plasma protein changes with a different cohort 

To validate some of the newly identified plasma protein changes in CRC patients, an independent cohort including 41 
patients who underwent CRC surgery obtained from the Bank of Biological Material at Masaryk Memorial Cancer Institute, 
Czech Republic was used. Higher concentrations of IL6 and CSF3 among CRC patients than in healthy volunteers were 
confirmed in the validation stage of the study (Figure 6.4a). Importantly, increased secretion of IFŃG, CXCL9 and CCL23 in 
the plasma of CRC patients compared to healthy subjects was detected in the validation cohort by Luminex (Figure 6.4a), 
suggesting that elevated plasma level of IFŃG, CXCL9 and CCL23 might be served as a biomarker of CRC. Importantly, similar 
as detected by PEA (Figure 6.3b), the elevated level of ACP6 in late stage compared with early stage of CRC was confirmed in 
this cohort as well (Figure 6.4b). Taken together, these results indicate that ACP6 might be a potential prognostic marker for 
advanced CRC. Ńotably, MAŃSC1 and ACP6 have not been previously reported to be associated with CRC development. 
However, these findings need to be confirmed by using bigger validation cohort. 

 
Figure 6.4. Validation of potential candidate biomarkers. (a) Plots with the concentrations of CSF3, IFŃG, IL6, CXCL9, and CCL23 in CRC 
patients (P) and healthy controls (HC) (mean ± SEM) detected by Luminex. (b) Plot with the concentrations of ACP6 detected by ELISA in 
CRC patients with early and late stages, respectively (mean ± SEM). T test was used for statistical analysis. *: p-value < 0.05, ****: p-value < 
0.0001, ŃS: non-significance. 

6.4. Discussion 

Cancer, including colorectal cancer, is the leading cause of death worldwide and the most devastating disease as the 21st 
century begins. Thus, there is an urgent need for the discovery and validation of reliable and efficient non-invasive 
biomarkers for early CRC detection and prognosis prediction, including biomarkers to detect cancer-associated 
inflammation. To determine plasma protein changes in CRC patients, by using PEA technology, we quantified 690 proteins, 
among which 202 were changed compared to healthy subjects. 

Among the elevated cytokines in CRC patients, CXCL9 and CCL23 have been identified as novel potential biomarkers. The 
T-cell chemoattractant CXCL9 was previously found elevated in CRC tissues compared to normal colon tissues and it was 
associated with tumor differentiation and invasion, lymph node and distant metastasis, as well as with vascular invasion 503. 
An enhanced expression of CXCL9 in cancer tissue than healthy tissue was also observed in the second Chinese study, where 
CXCL9 expression levels were associated with tumor stage and survival 504. Importantly, CXCL9 may also recruit T-cells to 
the TME and exerts antitumor activity505. The chemokine, CCL23 has been found as a cytokine with both, pro- and anti-
cancer properties. It can induce angiogenesis by activating C-C Motif Chemokine Receptor 1 (CCR1) on vascular endothelial 
cells and increase the proliferation of cancer cells, but also, it can promote immune infiltration 506. However, what type of 
immune cells and T-cells are attracted to the TME by CCL23 and CXCL9, respectively, requires further studies. A strong 
elevation of CCL23 protein was noticed in rectal cancer compared to non-rectal cancer consisting of ascending, transverse, 
and sigmoid colon 507, while CCL23 expression was not detected in colon adenocarcinoma cells in a second study 508. 
Interestingly, none of the previous studies reported high CXCL9 and CCL23 levels in the plasma of CRC patients. 

Apart from cytokines, plasma levels of other immune-related proteins were changed in CRC patients compared to the 
healthy controls, such as DPEP2 and Peroxiredoxin 6 (PRDX6), which have not been previously reported as plasma 
diagnostic biomarkers. The protein expression of DPEP2, a dipeptidase involved in leukotriene metabolism, was recently 
found as a modulator of macrophage inflammatory responses, protecting mice against Coxsackievirus B3-induced viral 
myocarditis 509. Interestingly, DPEP1, the paralog of DPEP2 was up-regulated in CRC tissue at mRŃA and protein levels and 
high DPEP1 expression was significantly correlated with cancer stage, location,and poorer prognosis 510, while no 
association of DPEP2 with CRC has been detected. Similarly, elevated PRDX6, a metabolic enzyme, may modulate 
inflammation and immune responses through the regulation of antioxidants and reactive oxygen species (ROS) 511. It was 
suggested that PRDX6 may promote CRC invasiveness and aggressiveness by inducing an oxidizing TME 512. Importantly, we 
found two mediators of apoptosis, CASP8 and BID, which presented high plasma levels in CRC patients compared to healthy 
subjects, with BID having the second highest fold change. Recently, circulating CASP8 was identified with high expression in 
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pre-operative serum samples of prostate cancer 513. BID, belonging to the B-cell lymphoma 2 (BCL-2) family, is a key regulator 
of apoptosis and a factor associated with CRC initiation and progression 514. It was found that high expression of proapoptotic 
BID was a predictor of overall survival in patients with CRC, whereas combined expression of BAD and BID was associated 
with disease-free survival rates and overall survival 515. However, further studies are needed to investigate whether the 
elevated plasma CASP8 and BID are associated with an exacerbated apoptosis of peripheral blood mononuclear cells (PBMC) 
among these patients, similarly as in the case of melanoma patients 516. Collectively, the altered cytokines and immune-
related proteins suggest an active modulation of the immune system in CRC patients at the systemic level as well as a 
systemic inflammatory status. 

It is well-known that several signaling pathways, such as Ras, ŃF-κB, and MAPK are altered in CRC patients leading to 
oncogenesis 517, which was also confirmed in our study at a systemic level. Interestingly, several oncogenic proteins were 
elevated in plasma, such as SCRŃ1 and RSPO3, whereas previous studies determine their overexpression in CRC tumor tissue 
518,519. SCRŃ1 accelerates tumor progression by the regulation of exocytosis of matrix metalloproteinase (MMP)-2/9 520, 
while RSPO3 is an oncogenic driver that causes CRC and extensive crypt hyperplasia, concomitantly stimulating stem cells 
and supportive niche cells 521. It was found that overexpression of RSPO2 and RSPO3 was presented by 4-10% of colon 
subjects 519 and recurrent R-spondin fusions in colon cancer activate the Wnt signaling and increase the tumorigenesis 522. 
Additionally, lower plasma levels of potential tumor suppressor proteins, such as RET and ARHGEF12 were detected in CRC 
patients. RET, is a transmembrane receptor tyrosine kinase and a receptor for the GDŃF-family ligands, which 
downregulation in CRC tissue compared to healthy tissue was noticed 523. CRC patients with somatic RET mutations 
exhibited a lower incidence of liver metastasis but a higher incidence of peritoneal metastasis and more frequently exhibited 
mucinous histology 524. On the other hand, a germ-line or somatic RET mutation was linked with more intense and complete 
angiogenesis in patients with advanced medullary thyroid cancers 525. ARHGEF12, also known as leukemia-associated Rho 
guanine-nucleotide exchange factor (LARG), is underexpressed in CRC tissue and is associated with reduced cell proliferation 
and a slower migration rate in cancer cells 526. Moreover, it was found that ARHGEF12 regulates cell adhesion and structure 
morphogenesis in esophageal squamous cell carcinoma tissues 527 and plays a key role in erythroid regeneration after 
chemotherapy in acute lymphoblastic leukemia patients 528. These proteins can be potentially used as an oncogenic protein 
signature for CRC diagnosis in plasma. Apart from oncogenic pathways, ŃAFLD was also enriched in this cohort. Meta-
analyses revealed that ŃAFLD was associated with an increased risk of gastrointestinal cancers 529 and colon cancers, 
especially in the right-sided colon494. 

More importantly, our data demonstrated the upregulation of Th17 cell differentiation in CRC patients. Th17 activity has 
been linked to CRC tumorigenesis and poor prognosis 530. It is well-known that chronic inflammation contributes to cancer 
development. We identified upregulation of IL12RB1 and CSF3 in Th17 differentiation and IL17 signaling, indicating their 
participation in CRC-related inflammation. It is worth noticing that CSF3 expression was previously found elevated in the 
serum of CRC patients 492. An increased gene expression of CSF3 was also observed in CRC tissue from two Consensus 
Molecular Subtypes (CMS) (microsatellite instable immune and mesenchymal), where it was associated with regulators (e.g., 
CXCL5) of invasion 531. IL12RB1, a subunit of the interleukin 12 receptors is associated with tyrosine kinase 2 (TYK2), which 
plays a pivotal role in immunity to viral infection and cancer surveillance 499. It was found that elevated expression of tumor 
tissue IL12RB1 was associated with lung cancer progression 532, whereas its correlation with CRC development has not been 
reported. Moreover, IL12RB1 contributes to both the IL12- and IL23-signaling pathways and is involved in both Th1 and 
Th17 cell differentiation 533. A carbonic anhydrase, CA11, was also associated with inflammation which overexpression 
promotes the proliferation and invasion of gastrointestinal tumors without any previous association with CRC in plasma 502. 
Importantly, the immune checkpoint inhibitor CD276, also called B7-H3 was also linked to inflammation. CD276 was 
previously reported with high expression in CRC tissue and may contribute to the tumor evasion of T-cell mediated responses 
500,534and has been already proposed as a target for immunotherapy 535. The overexpression of this immune checkpoint 
molecule in our study further indicates the importance of this protein in the personalized medicine and immune-checkpoint 
therapy aspect. 

In contrast, the reduced plasma level of CXCL6 and APBB1IP in CRC patients with inflammation was observed in our 
study. It was recently found that low serum CXCL6 levels were associated with an increased risk of CRC development 498, 
while CXCL6 expression is not altered in CRC tissue 536. The APBB1IP is a Rap1-binding protein that acts as a regulator of 
leukocyte recruitment and pathogen clearance through complement-mediated phagocytosis501. It was shown that 
expression of APBB1IP was correlated with the prognosis of various cancer types and its upregulation has been 
demonstrated as associated with increased immune cell infiltration, especially CD8+ T cells, natural killer (ŃK) cells, and 
immune regulators 501. Bioinformatics analyses revealed that APBB1IP may be used as a potential biomarker for 
osteosarcoma metastasis 537 and suggested its potential role in the evolutionary mechanisms of head and neck squamous 
cell carcinoma related to inflammation and TME 538. Moreover, cancer-related inflammation may cause the downregulation 
of APBB1IP decreasing the recruitment of leukocytes to the TME. In this study, for the first time, we reported the association 
of reduced plasma APBB1IP level with CRC and inflammation, suggesting that APBB1IP could be a potential biomarker for 
inflammation-associated CRC. 

The next two elevated plasma proteins, MAŃSC1 and ACP6, identified in our study have never been suggested as 
associated with CRC risk. Expression of bone marrow MANSC1was detected in patients with different hematologic 
malignancies such as acute myeloid leukemia, myelodysplastic syndromes, and primary myelofibrosis, but no significant 
correlations between the expression of the gene and survival were observed 539. In contrast, an association between high 
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expression of MANSC1 and a positive prognosis for overall survival was found in patients with non-small cell lung cancer 540. 
MANSC1 Single Ńucleotide Polymorphism (SŃP) has been also identified as a functional SŃP in patients with overall prostate 
cancer and non-advanced prostate cancer in the genome-wide association study (GWAS) study 541. The metabolic enzyme 
ACP6 hydrolyzes LPA to monoacylglycerol and plays a role in regulating lipid metabolism in the mitochondria 542,543. It has 
been recently demonstrated that overexpression of ACP6 in hepatocellular carcinoma tissue was positively correlated with 
clinical progression and worse overall survival of examined patients 542. On the other hand, decreased expression of ACP6 
was found to contribute to increased cell mortality and disease progression in high-grade serous ovarian cancer and 
esophageal squamous cell carcinoma543,544. It was found that CRC cells have abnormal LPA receptor expression that may be 
associated with enhanced proliferation, survival, and invasion of CRC cells 545. These results suggest that ACP6 may play a 
key role in oncogenesis. A positive correlation of plasma ACP6 with the advanced stage of CRC has been revealed for the first 
time in our study. Moreover, ACP6 was reduced in CRC patients with cancer-related inflammation. The function of ACP6 in 
cancer-related inflammation and CRC tumorigenesis needs to be further investigated. 

More interestingly, three pro-inflammatory cytokines, IL32, IL17C, and IFŃG, were increased in the early stages of CRC 
compared to late-stage patients. IL32 is an intracellular pluripotent cytokine, expressed in various cell types, which affects 
many cellular and physiological functions such as cell death and survival, angiogenesis, inflammation, and response to 
pathogens 546. Increased levels of IL32 were found in cancer tissue 547,548, and primary CRC lymph nodes metastasis 549. 
Moreover, IL32 can stimulate ŃK and T-cell cytotoxicity against primary solid tumors, as well as increase T-cell infiltration 
550. In our study, we observed increased circulating IL32 associated with the early tumor stage, indicating that IL32 may 
serve as a biomarker for the early stage of CRC. The second pro-inflammatory cytokine, IL17C, a member of the IL17 family, 
plays an essential role in immunopathology, autoimmune diseases, and cancer progression 551. It was found that IL17C is 
higher expressed in CRC tissue and induces tumor angiogenesis of intestinal endothelial cells via VEGFR2 production, 
subsequently enhancing cell invasion and migration of CRC cells 552,553. Moreover, elevated levels of serum and tissue IL17C 
were observed in patients with active IBD, which can result in cancer progression 552. Among these patients, the production 
of IL17C is induced by the synergic effect of IL17A and TŃF-α 554. Therefore, high circulating IL17C may be associated with 
tumorigenesis from IBD to early stages of CRC. Lasts of these cytokines, IFŃG, is critical to both innate and adaptive immunity 
555. IFŃG was reduced in PBMC of patients with recurrent CRC, with the most significantly reduced expression in stage IV 
tumors 556. On contrary, the upregulation of IFNG mRŃA in late-stage CRC tissue and peripheral blood of patients with CRC 
was observed in another study 557. IFŃG is a well-established anti-tumor factor with controversial findings in CRC at mRŃA 
and protein levels. Several studies did not find a significant association between circulating IFŃG and CRC development558–
560. In contrast, our analysis showed high levels of IFŃG in CRC patients supporting previous findings 496. Moreover, we found 
high levels of IFŃG in the early stages of CRC, suggesting a higher anti-tumor activity of lymphocytes than in the late stages. 
Taken as a whole, these findings indicate that ACP6, FLT4, MAŃSC1, IFŃG, IL17C, and IL32 may be used as promising 
prognostic biomarkers that distinguish early-stage from advanced CRC. Moreover, IFŃG can be a potential biomarker for 
early detection of CRC due to its discrimination between early-stage patients with advanced CRC patients as well as healthy 
controls, which has not been reported before. 

In this study, the application of PEA technology enabled us to detect 690 proteins from a low amount of plasma of CRC 
patients and healthy subjects. Despite the sensitivity and accuracy of PEA, this technology is limited by the availability and 
specificity of antibodies, and more importantly, the number of preselected proteins. Women are dominant in both study 
groups, which is different concerning the known population with CRC. We lacked information on family history, which is 
known as one of the best predictors of CRC risk. Future studies should be conducted to verify our results on a larger number 
of samples and by using PEA or other quantitative methods. 

In conclusion, we identified plasma protein changes in CRC patients related to cytokine interactions, oncogenic 
pathways, Th17 activity, metabolism reprogramming, as well as cancer-related inflammation with potential usage in CRC 
diagnosis. We also showed that six proteins, including ACP6, FLT4, IFŃG, IL17C, IL32, and MAŃSC1 may be used as potential 
prognostic biomarkers to discriminate early-stage and advanced CRC. Moreover, IFŃG is a new candidate biomarker for the 
early detection of CRC. 

CHAPTER 7. Deep proteomics characterization of colorectal cancer tumor 
microenvironment enriched in CD4+ T cells 

In the last part of the thesis, deep proteomics analysis was applied to CRC and normal matched tissue samples enriched 
in CD4+ T cells and other immune cells. This study aimed to characterize protein changes associated with CRC development, 
progression and immune infiltration that could become novel potential regulators of immune responses within CRC TME. 

This study resulted in an unpublished manuscript: 
Urbiola-Salvador V, Miroszewska D, Jabłońska A, Duzowska K, Drężek-Chyła K, Zdrenka M, Śrutek E, Szylberg Ł, 
Jankowski M, Bała D, Zegarski W, Nowikiewicz T, Makarewicz W, Adamczyk A, Ambicka A, Przewoźnik M, Harazin-
Lechowicz A, Ryś J, Filipowicz N, Piotrowski A, Dumanski JP, Chen Z. Deep proteomics characterization of colorectal 
cancer tumor microenvironment enriched in CD4+ T cells. Unpublished manuscript 
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7.1. Introduction 

Despite great advances in colorectal cancer (CRC) diagnosis and treatment, CRC remains the second most deadly and the 
third most common cancer, worldwide 561. Recently developed immunotherapies ,such as immune checkpoint blockade, have 
revolutionized CRC treatment, however, CRC can acquire resistance through alternative immunosuppressive mechanisms. 
As a consequence, only a minor portion of CRC patients exhibit complete responses to therapy 562. Remarkably, the tumor 
microenvironment (TME) comprised of CRC cells intermixed with immune and stromal cells plays a central role in CRC 
development, progression, and immune evasion 563. Therefore, deeper understanding of the CRC TME immune composition 
and the underlying immune evasion mechanisms is urgently needed. 

Within the CRC TME, Cancer Associated Fibroblasts (CAFs) can support tumor growthand metastasis and they can 
interact with immune cells through pro-inflammatory and immunosuppressive mediators 564. Among myeloid cells, M1 
macrophages are mainly involved in anti-tumor activity while M2 macrophage phenotypes are related to 
immunosuppression and tissue remodeling that can recruit Tregs via CCL20, Th2 cells via CCL17, CCL18, and CCL22 to the 
TME 565. CD4+ T helper cell subsets are essential regulators of the immune responses within CRC TME from which Th2 and 
Treg induce multiple immunosuppressive mediators such as IL10, and immune checkpoint inhibitors (PD1, TIM3, and 
CTLA4), favoring CRC immune evasion 77. Meanwhile Th1 can recruit cytotoxic CD8+ T cells to enhance anti-tumor activity 
and Th1 infiltration is linked to better CRC prognosis 566. Importantly, metabolic reprogramming of CRC TME by cancer and 
immune cells directly affect the TME cell composition including immunosuppressive mechanisms via exhaustion of effector 
anti-tumor cells through metabolic deprivation of amino acids such and induced high adenosine levels via CD39/CD73 
among others 567. 

Recent advances in mass spectrometry (MS)-based proteomics allows to quantify thousands of proteins with high 
accuracy and sensitivity whilst its clinical application can provide novel insights into CRC research 102. In 2011, Wis niewski 
et al. applied laser capture microdissection (LCM) followed by high-throughput MS proteomics analysis to CRC and normal-
matched formalin-fixed paraffin embedded (FFPE) tissue from 3 patients. As a proof of the technology potential, around 
4000 proteins were quantified per samples using a peptide pre-fractionation strategy detecting increased CRC marker, CEA, 
metastasis-associated in colon cancer protein 1 (MACC1), and CD55 568. In their follow-up study, the same strategy was 
applied to cancer, adenoma and normal samples from 16 CRC patients. Similarly, CEA and other tumor related proteins were 
increasing from normal to adenoma and CRC as well as metabolic reprogramming from oxidative phosphorylation to 
glycolysis and fatty acid metabolism. Moreover, multiple transporters were elevated to acquire nutrients from the TME 569. 
Ńext, proteogenomics analyses of fresh frozen colon cancer and normal tissues from 110 patients resulted in the discovery 
of apoptosis dysregulation and increased proliferation, leading to novel potential therapeutic targets 246. Interestingly, 
microsatellite unstable cancer sustained increased glycolysis linked to a reduction in CD8+ T cells within colon cancer TME 
246. Recently, another proteogenomics study including 145 CRC patients determined that patients could be stratified in three 
clusters resembling Consensus Molecular Subtypes (CMS) together with phosphoproteomics data to infer druggable targets. 
With this approach, minipatient-derived xenograft mouse models were used to evaluate potential druggable targets in vivo, 
to establish a personalized therapy screening platform 570. Another recent proteogenomics study with 135 primary and 123 
metastatic CRC patients’ samples unveiled that proteomic hypoxic signatures are linked to metabolic reprogramming and 
Epithelial-Mesenchymal Transition (EMT) together with Transforming Growth Factor Beta 1 (TGFB1) signaling 571.Also, CRC 
stemness was associated with altered alternative telomere lengthening (ALT) pathway. Importantly, inferred immune score 
was associated with active MHCII antigen presentation, proteasome processing, FOXP3 and CD68 expression while immune 
“cold” tumors were characterized with poor survival 571. Moreover, proteomics analysis using 12 CRC samples demonstrated 
that metabolic Phospholipase A2 Group IVA (PLA2G4A) pathway is associated with immunosuppressive CD39+γδ Tregs and 
prognosis of right-sided CRC 572. Previous proteogenomics studies used bulk samples of fresh frozen tissue while 
microdissection allows for Region of Interest (ROI) isolation to characterize their specific proteomes within cancer tissue 
571. For instance, LCM followed by Data Independent Acquisition (DIA) MS-based proteomics was applied to evaluate 
proteomics changes in epithelial and stromal regions from 22 patients in the transformation from normal to adenoma to 
CRC . Similar protein features were shared between stromal adenoma and stromal CRC characterized by active antigen 
presentation and higher proportions of CD4+ and CD8+ T cells 573. Another recently applied approach consisted of fresh 
frozen tissue disaggregation and cell sorting of CD4+ and CD8+ T cells from 13 CRC patients. As a result, lipocalin-2 (LCŃ2) 
was increased in CRC promoting T cell apoptosis via deregulation of iron efflux 574. Interestingly, microdissection can be also 
combined with IHC staining to isolate ROIs enriched with specific cell markers. Huang et al. 575 applied IHC-LCM followed by 
DIA MS-proteomics to isolate CAFs and hepatocellular carcinoma cells within the cancer tissue demonstrating the main 
specific cell type isolation by representative CAF and cancer markers.  

In this study, CD4 IHC followed by macrodissection was applied to isolate ROIs enriched with high CD4+ T cells and 
immune infiltration from CRC and normal-matched FFPE tissue samples. Deep DIA MS-based proteomics analysis aimed to 
determine protein changes involved in CRC development, progression, and associated immune infiltration within enriched 
ROIs. Several tumorigenic processes were altered such as cell cycle associated pathways and key epigenetic and 
transcriptional regulators, altered apoptosis with high levels of anti-apoptotic proteins. Importantly, protein profiles 
revealed a complex immune network of cancer-associated inflammation and adaptive immune processes composed of pro-
inflammatory and immunosuppressive mediators such as CD276 and PVR within the CRC TME. Moreover, CRC TME 
proteome reflected heterogeneous cell compositions with co-existence of CAFs with high FGF2 and monocytes and 
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immunosuppressive M2 macrophages with high ICOSL linked to CRC progression. Moreover, Treg signatures were associated 
to high MHCII antigen presentation including tolerogenic-inducer GILT, inflammatory S100A8 and S100A9, and 
immunosuppressive mechanisms. Ńoteworthy, CRC TME showed metabolic reprogramming with several 
immunosuppressive mechanism including ŃT5E-derived adenosine signaling as well as tryptophan, taurine, and arginine 
deprivation ongoing simultaneously. Ńoteworthy, the novel immune-regulatory receptor Mast Cell Expressed Membrane 
Protein 1 (MCEMP1) was associated with CRC and may be involved in adhesion and migration of CRC infiltrating CD4+ T 
cells, especially Tregs. 

7.2. Materials and methods 

7.2.1. Study cohort and sample collection 

In this study, 23 CRC patients (age mean 59.2, 42-75 years and 52% males (12 out of 23)) were included who underwent 
CRC surgery (Appendix V Table S1). 15 CRC patients had tumors with advanced stages according to the Union for 
International Cancer Control (UICC) classification. Malignant neoplasm was confirmed by a pathologist. Samples were 
obtained from 3P–Medicine Laboratory, Medical University of Gdansk and Bank of Biological Material at Masaryk Memorial 
Cancer Institute, Czech Republic. Tissue samples were collected after surgery, rinsed with PBS to remove blood and were 
formalin-fixed paraffin embedded. Then, sections of 5 µm thickness were cut with a microtome and sections were placed on 
glass slides and stored at room temperature. 

7.2.2. IHC staining and ROI selection 

For IHC staining, tissue sections of 5 μm thickness were deparaffinized for 2h at 60 °C, incubated in xylene for 20 minutes, 
and rehydrated in descending concentrations of ethanol (100%, 95%, 80%, 70%) for 5 minutes each. Slides were washed in 
Milli-Q water and placed in the preheated target retrieval solution pH=9 (DAKO, S2367) at 96 °C for 30 minutes, washed in 
Milli-Q water followed by PBS, and blocked with 3% BSA in PBS. Slides were stained with anti-CD4 antibody (Abcam 133616) 
at dilution 1:100 in 0.5% BSA/PBS with subsequent detection with HRP/DAB Detection IHC kit (Abcam, ab64261) according 
to manufacturer’s instructions with antibody incubation time extended to overnight in humid chamber at 4°C. Slides were 
counterstained with hematoxylin (Sigma-Aldrich, GH5332) for 1 minute and mounted with Pertex® (Histolab, 00801-EX). 
Mounted slides were scanned with Axio Scan.Z1 (ZEISS, Oberkochen (Germany), digital images were uploaded to QuPath 
v.5.2. as Brightfield image (H-DAB) and ROI areas were marked. Color deconvolution was performed with Estimate stain 
vectors command followed by Positive Cell Detection command to detect CD4+ cells with default parameters, except for 
Intensity threshold parameters which were optimized for each sample individually. Score compartment parameter was set 
as ‘Ńucleus: DAB OD mean’ whilst triple-thresholds values were adjusted individually for each of the samples due to variance 
of the intensity of the staining. 

7.2.3. Sample preparation for proteomics analysis 

Selected ROIs were scraped from the glass slide with a razor blade and transferred to a Protein LowBind Eppendorf tube 
with 3 µL of lysis buffer (4% SDS, 100 mM Tris-HCl pH 7.6 supplemented with protease and phosphoprotease inhibitors) 
per 10 nL of tissue. Samples were sonicated for 5 cycles of 30 s and 30 s pause at RT in an ultrasonicator Qsonica Q700 
coupled with a cooler system (Qsonica, Ńewtown, CT, USA). Protein decrosslinking was performed by incubation in a 
thermoshaker for 1 h at 99 °C and 600 rpm. Protein concentrations were measured with the Pierce BCA Protein Assay Kit 
(Thermo Fisher) following manufacturer’s instructions. Disulfide bonds were reduced with 50 mM DTT and an incubation 
at 95 °C for 5 min. Samples were prepared following the Filter Aided Sample Preparation (FASP) protocol 110 in 10 kDa cut-
off Microcon filters (Merck, Rahway, ŃJ, USA). Six consecutive washes were performed with 200 µL of urea buffer (8M in 
100mM Tris-HCl pH 7.6) at 10000 RCF for 20 min were performed. Free cysteines were blocked with 50 mM iodoacetamide 
in urea buffer by incubation 20 min in darkness. Then, samples were washed three times with 100 µL of urea buffer followed 
by two washes with 100 µL of digestion buffer (50 mM Tris-HCl pH 8.0) at 10000 RCF for 15 min. Proteins were digested 
with Sequencing Grade Modified Trypsin (Promega, Madison, WI, USA) at a protein:trypsin ratio of 1:50 overnights in 60 µL 
of digestion buffer at 37 °C. Then, peptides were eluted by centrifugation followed by two elutions with 125 µL and 100 µL 
of digestion buffer. Trypsin activity was quenched by adding trifluoroacetic acid at 0.1% final concentration. Peptide samples 
were desalted by STop And Go Extraction (STAGE) Tips protocol 294 in Empore C18 extraction disks (CDS Analytical LLC, 
Oxford, PA, USA) and eluted with 60% acetonitrile (ACŃ)/1% acetic acid solution. Samples were dried using SpeedVac and 
stored at −20 °C until analysis. 

7.2.4. High-pH reversed phase liquid chromatography (RPLC) fractionation 

Peptides were reconstituted (2% ACŃ, 0.1% formic acid (FA)), a pool sample was mixed from all the samples and diluted 
in phase A (5% ACŃ pH 9.8). The pool sample was fractionated in a Gemini high pH C18 column (5μm, 4.6 x 250mm) coupled 
in a Shimadzu LC-20AB HPLC system by gradient of phase B (95% ACŃ, pH 9.8): 5% for 10 min, 5%-35% in 40 min, 35%-
95% in 1 min, and 95% for 3 min with a at a flow rate of 1mL/min. Elution was monitored at 214 nm and eluates were 
collected every minute. Eluates were concatenated in 10 fractions that were freeze-dried. 
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7.2.5. LC-MS/MS analysis and MS data analysis 

Equal amounts of peptide samples with equal amounts of spiked iRT peptides (Biognosys Inc, Ńewton, MA, USA) were 
injected into a Thermo UltiMate 3000 UHPLC liquid chromatograph with a trap column to enrich peptides coupled to a self-
packed C18 column (150μm internal diameter, 1.8μm column size, 35cm column length). Peptides were separated by a 
gradient of phase B (98% ACŃ, 0.1% FA): 5% for 5 min, 5%-25% in 85 min, 25%-35% in 10 min, 35%-80% in 5 min, 80% 
for 10 min, 80%-5% in 5 min at a flow rate of 500 nL/min. Separated peptides were ionized with spray voltage 2kV and 
injected to a tandem mass spectrometer Fusion Lumos (Thermo Fisher Scientific, San Jose, CA, USA). Pool fractions were 
analyzed in Data Dependent Acquisition (DDA) detection mode with 60K resolution MS scan (350-1500m/z) and MS AGC 
target of 3e6 with maximal injection time (MIT) 50ms by orbitrap mass analyzer that triggered the top 30 precursors. For 
MS/MS, resolution was 15K (200-2000 m/z) and AGC target was set to 1e5 with MIT 50 ms generated by High-Collision 
Dissociation (HCD) fragmentation with a normalized collision energy (ŃCE) of 30%. The dynamic exclusion was 30 s and 
MS/MS m/z start was fixed to 100. Precursors for MS/MS scan were with positive charge 2-6 and intensity over 2e4. Samples 
were analyzed in DIA detection mode with the same parameters as DDA, except the MS scan was 400-1500 m/z equally 
divided into 44 continuous windows and MS/MS resolution was 30K. 

A hybrid spectral library was built with FragPipe (version 21.0) with the DIA_SpecLib workflow and default parameters 
including specific trypsin digestion 285. Homo sapiens UniProtKB/Swiss-Prot database (Release 2024_02) was used as 
reference.Carbamydomethylation (C) was set as fixed modification. Variables modifications included oxidation (M), Ń-
terminal acetylation, phosphorylation (STY), ubiquitination (K), pyroglutamic acid (QC), methylation (K), formylation (K), 
formaldehyde adduct (WYH), carbamylation (MLV), and dihydroxylation (WMH). DIA data quantification was performed 
with DIA-ŃŃ (version 1.8.2 beta 39) using the generated hybrid library with default parameters except protein inference 
was deactivated, while match between runs and peptidoform scoring were used 576. 

7.2.6. Proteomics data processing, statistical and bioinformatics analysis 

Proteomics data and statistical analysis were performed in RStudio (version 1.3.1093) (RStudio, PBC, Boston, MA, USA) 
with R (version 4.3.3) (R Foundation for Statistical Computing, Vienna, Austria). Proteomics data report from DIA-ŃŃ was 
used as input and spectral features were filtered by data preprocessing with MSstats R package (version 4.8.7) with default 
parameters except imputation was deactivated. MSstats preprocessing mainly includes data filtering with low detection 
rates, logarithmic transformation, feature median center normalization, and Tukey Median Polish summarization to protein 
abundances 577. MSstats mixed-linear model was applied to test significantly differentially expressed proteins (DEPs) 
between paired CRC and normal-matched tissue samples. Proteins were considered differentially expressed with a False 
Discovery Rate (FDR) < 0.05 cut-off that was controlled by Benjamini and Hochberg correction. Spearman correlation 
analysis was applied to determine significantly correlated proteins with tumor TŃM stage and predicted Treg fractions with 
a p-value < 0.05 cut-off. CIBERSORT deconvolution of immune cell fractions 578 was applied with the default LM22 signature 
matrix using IOBR R package (version 0.99.8) in absolute mode. Pathway enrichment analysis supported by active 
subnetworks was applied to determine enriched GO and KEGG terms from DEPs and significantly correlated proteins with 
the pathfindR R package (version 2.3.0) based on the STRIŃG protein-protein interaction database and FDR correction 299. 
Cytoscape (version 3.10.2) was used to generate protein networks from enriched term proteins based on STRIŃG database. 

Paired t-test was applied to compare protein levels from a public proteomics dataset 574. All the figure plots were generated 
with ggplot2 R package (version 3.4.3), except alluvial plot complemented with ggalluvial R package (version 0.12.5), 
Uniform Manifold Approximation and Projection (UMAP) plot that was created using the default pipeline using 20 Principal 
Components of Seurat R package (version 4.4.0), and heatmaps were generated with ComplexHeatmap R package (version 
2.16.0) with z-score normalization. 

7.3. Results 

7.3.1. Deep DIA proteomics characterization of FFPE CRC and normal-matched tissues 
enriched with CD4+ T cells and immune infiltration 

In this study, 23 CRC patients were included ,of which 15 were diagnosed with advanced TŃM stages, to perform deep 
proteomics characterization of CRC tissues with high CD4+ T cells infiltration including secondary lymphoid structures and 
tertiary lymphoid structures (TLSs) in normal and CRC tissues, respectively. FFPE tissue samples were stained with CD4 
antibody to determine CD4 infiltration (Figure 7.1a) and selection according to high immune lymphocyte infiltration was 
made. ROIs with high percentages of CD4 infiltration were isolated by macrodissection from CRC and normal matched tissue 
slides followed by protein extraction and sample preparation by FASP protocol for DIA LC-MS/MS proteomics analysis. To 
create a bona fide spectral library, high-pH fractionation was performed in a pool sample was fractionated and ten fractions 
were analyzed in DDA mode while the samples were analyzed in DIA mode to improve the protein identification and 
quantification. As a result, 9249 protein groups supported by spectra from 76448 peptides were included in the spectral 
library. After data preprocessing and peptide summarization, 7983 protein groups were quantified along the cohort samples 
supported by 51789 peptides with FDR < 0.01. Most of the protein groups were quantified in cancer and normal, however, 
some of them were selectively expressed (Figure 7.1b, Appendix V Table S2). Several selectively expressed proteins in normal 
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matched tissue were related to epithelial integrity such as BEST4, a mature absorptive cell marker 579, PLA2G10 that is 
expressed in Paneth-like secretory cells and suppression is linked to CRC 580, and recently found tumor suppressor ABCA8 
581 as well as proteins related to normal immune response and Peyer’s patches integrity including CCR10, involved in IgA-
secreting B cell migration to intestinal mucosa, and CCL19 constitutively expressed in secondary lymphoid tissues to attract 
CCR7 expressing T cells and other immune cells. The lack of these proteins is a reflection of the disruption of normal tissue 
integrity in CRC. 

 
Figure 7.1. Deep proteomics characterization of C4+ T cell enriched CRC tissue and normal matched tissue. (a) CD4 staining of 

representative CRC and normal matched tissues (left and right) and their corresponding magnifications with high CD4+ T cell infiltration. 
(b) Venn diagram of quantified proteins between both tissue types. (c) Alluvial plot of proteins commonly identified proteins in CRC and 
normal tissue divided in four quantiles according to their cumulative distribution of protein abundance mean. (d) UMAP plot of cancer and 
normal samples. 

Among selectively detected proteins in CRC, ASCL2 and LGR5 were associated with CRC stem-like cells with metastatic 
capacities 582,583, cyclin CDKŃ2A, epigenetic regulators such as CTCF, and transcriptional factors such as MACC1 that may be 
involved in CRC epithelial mesenchymal transition (EMT) 584–586, JUŃ, JUŃB, DACH1 or DACH2 and the cell cycle regulator 
AURKA together with its inducer ARID3A 587 (Figure 7.2b). Also, extracellular cellular matrix (ECM) remodelers were only 
found in CRC such as cathepsin K (CTSK), metalloproteinases MMP1, MMP11 and MMP12 588 as well as sulfatases SULF1 and 
SULF2 involved in CRC progression 589,590. There were proteins linked to apoptosis such as death receptor 5 (TŃFRSF10B) 
but at the same time the decoy receptor TŃFRSF6B that protects against apoptosis was identified. Interestingly, proteins 
involved in CRC metabolic rewiring were also identified only in CRC including sulfotransferase SULT2B1 that is involved in 
CRC progression and metastasis by metabolic lipid activation 574, the taurine and amino acid transported SLC6A6, folate 
receptor FOLR3 related to one-carbon metabolism and KYŃU involved in tryptophan metabolism-mediated 
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immunosuppression, a mechanism exploited in CRC via mainly tumor-associated macrophages and Treg 591. Although 
stromal tissue was excluded from ROIs, CRC stromal infiltration andcancer-associated fibroblasts (CAFs) association is 
reflected by COL10A1 and COL11A1 selective detection in CRC samples 592. Importantly, several inflammatory players were 
also selectively detected in CRC such as monocyte and granulocyte chemoattractant S100A12, that contributes to innate 
immunity by interaction with toll-like receptor 4 (TLR4), receptor for advanced glycation end products (RAGE), or CD36 that 
is implicated in IBD and CRC 593. Additionally, other immune related proteins were selectively detected in tumor samples 
such as C5AR1, a complement C5a receptor, cytolytic perforin PRF1, Interferon Induced Transmembrane Protein 3 (IFITM3), 
or chemoattractant cytokines CXCL10 and CCL20. Moreover, recently characterized proteins were also detected in CRC 
samples including C19orf53 that plays a role in metabolic imbalance and excessive cell proliferation 594 and C19orf59 defined 
as Mast Cell Expressed Membrane Protein 1 (MCEMP1). 

To investigate the distribution of the cumulative abundance between cancer and normal tissue, proteins were divided in 
four quantiles according to the cumulative abundances. The alluvial plot showed similar patterns of cumulative distribution, 
especially the most abundant proteins (Q1) were shared between cancer and normal including histones, keratins, tubulins, 
and other structural proteins as well as most of low-abundance proteins (Q3 and Q4). However, several proteins are in 
different quantiles between cancer and normal, suggesting different protein composition due to tumorigenesis and TME 
alterations (Figure 7.1c). In addition, UMAP analysis showed that cancer and normal samples were grouped according to 
their protein abundance (Figure 7.1d). Collectively, DIA proteomics analysis of CRC and normal matched tissues enriched in 
CD4+ T cells and immune infiltration consistently quantified over 7900 protein groups with several selectively proteins that 
reflects CRC TME with tissue integrity disruption, oncogenic TFs and cycle proteins from uncontrolled proliferation of CRC 
cells, ECM remodeling, metabolic rewiring, and prominent presence of pro-inflammatory proteins and cytokines as well as 
immunosuppressive mechanisms.  

7.3.2. Protein changes in CRC TME reflects a complex network of immune processes with cell 
heterogeneity 

To determine protein changes involved in CRC development within the TME enriched in CD4+ T cell infiltration and other 
immune cells, a mixed-general linear model was applied to protein abundances between paired tumor and norma-matched. 
As a result, there were 1954 protein groups with higher levels and 607 with lower levels in CRC (Figure 7.2a, Appendix V 
Table S3). The most elevated protein in CRC was IGF2 that is a mitogen involved in cancer invasion secreted by CRC cells and 
CAFs, that together with high levels of COL12A1, tenascin C (TŃC), Latent Transforming Growth Factor Beta Binding Protein 
2 (LTBP2), SPARC and CD90 supports the presence of CAFs promoting cancer-associated inflammation within highly 
immune infiltrated CRC regions 595–599. Similarly to selectively detected proteins, the most elevated proteins in CRC included 
CRC stem cell markers such as OLFM4 and PROM1 as well as adhesion proteins CEA Cell Adhesion Molecule (CEACAM) 6, an 
anoikis inhibitor, and CEACAM5 600–603. In addition, other oncogenes and proteins involved in CRC proliferation were elevated 
such as cyclins CDK1-2,5-7, MKI67, thymidine kinase 2 (TK2), G protein subunit gamma 4 (GŃG4) 604, and Gprotein-coupled 
receptor, class C, group 5, member A (GPRC5A) 605 among others. Moreover, S100A12 is supported by other family proteins 
including S100A8 and S100A9 that are also involved in cancer-associated inflammation. Also, elevated S100P contributes to 
angiogenesis and CRC progression whose regulator MACC1 was selectively detected in CRC samples 606,607. Also, MMP10, 
MMP2, and MMP9 together with Ńeutrophil Gelatinase-Associated Lipocalin (ŃGAL) are involved in ECM remodeling, cancer 
progression and metastasis while elastin (ELŃ) supports CRC growth within TME 608,609. Interestingly, multiple proteins 
involved in inflammation and neutrophile/monocyte/macrophage infiltration were elevated in CRC such as defensins DEFA1 
or DEFA3 610, Azurocidin 1 (AZU1) 610, myeloperoxidase (MPO) 611,Macrophage Migration Inhibitory Factor (MIF),myeloid 
nuclear differentiation antigen (MŃDA) involved in inflammosome activation 612, and guanylate-binding protein 1 (GBP1). 
Interestingly, lipocalin 2(LCŃ2) was elevated in CRC which recently was associated to T-cell apoptosis by iron efflux 
deregulation in CRC 574. Meanwhile, not previously reported, high levels of nucleophosmin 3 (ŃPM3) may promote  mediated 
immune scape in CRC 613. Importantly, we also found elevated levels in CRC tissue of CSK binding protein (CBP) that is a 
negative TCR signaling regulator via CSK-mediated LCK inhibition and a PD-1 signaling mediator 614,615. In addition the 
master immunosuppressor TGFB1 was elevated in CRC together with Syndecan Binding Protein (SDBP) that contributes to 
TGFB1-induced epithelial-to-mesenchymal transition (EMT) as well as elevated levels of immune checkpoint CD276 and 
PVR 616,617were identified. Moreover, Ly1 Antibody Reactive (LYAR), which is a negative regulator of ŃF-kappa-B-mediated 
pro-inflammatory cytokines expression that can be expressed in CRC, T cells, B cells and myeloid cells 618, was increased in 
CRC. At the same time, other innate immune related proteins, such as LBP and anti-bacterial Bactericidal Permeability 
Increasing Protein (BPI) were elevated (Figure 7.2a). 
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Figure 2. CRC TME enriched in CD4+ T cells and immune infiltration reflects a complex immune network. (a) Volcano plot of 
differentially expressed proteins (DEPs) between CRC and normal matched tissue with corresponding logarithmic fold changes and adjusted 
p-values. (b) Bubble plot of selected GO-BP from DEPs between CRC and normal tissue. (c) Ńetwork of innate and adaptive immune 
processes within CRC TME inferred from DEPs present in the GO-BP terms. (d) Bar plot of CIBERSORT deconvolution results from cancer 
and normal tissues. Cell fractions are normalized to 1. (e) Violin plot of significantly changed cell fractions between cancer and normal 
tissues (all of them significant with adjusted p-value < 0.05. 

Among reduced proteins in CRC, crucial proteins to maintain intestine mucosa integrity and nutrient intake such as 
trefoil factor (TFF)-3, peptide-YY (PYY) , and glucagon together with multiple keratins and mucins were identified, reflecting 
the mucosa disruption in CRC CRC (Figure 7.2a, Appendix V Table S3). Supporting CRC tissue disruption, the lack of tissue 
integrity is evident by reduced levels of desmin and dermatopontin. Also, the reduction of EPCAM is related to EMT and 
reduced levels of apoptotic protein GRAMD4, also involved in TLR9-mediated inflammation 619,620,may provide apoptosis 
resistance to CRC cells.. Moreover, tumor suppressors such as Chromogranin-A 621 and Intelectin 1 (ITLŃ1), that can inhibit 
suppressive myeloid cells 622, are also reduced in CRC . Importantly, other anti-tumor macrophage derived proteins were 
reduced including FOLR2 and MARCKS 623,624, supporting the M2 macrophage infiltration within CRC TME. Regarding B cell 
proteins, we found reduced levels of IgA, and JCHAIŃ in CRC from IgA plasma secreting cells required for intestinal immunity 
as well as protective proteins such as Fc Gamma Binding Protein (FCGBP) and zymogen 16 (ZG16) while IgGs, the BCR 
signaling transducer CD81 which facilitates clonal expansion and antibody production 625, and the IgM signal transducer 
Immunoglobulin Binding Protein 1 (IGBP1) are elevated in CRC. Another relevant reduced protein was Ńeural Cell Adhesion 
Molecule 1 (ŃCAM1), CD56, involved mainly in ŃK cell activation but also in regulation of T cells and B cells. 

Ńext, pathway enrichment analysis of GO and KEGG terms with DEPs and selectively expressed proteins was performed 
to infer the biological processes involved in CRC TME. Both analyses showed that the top terms were associated with splicing, 
RŃA synthesis and translation, cell cycle, DŃA repair, proteasome, and protein folding (Appendix V Figure S1a-b, Table S4 
and S5). Ńoteworthy, metabolic rewiring was reflected in CRC protein changes with reduced oxidative phosphorylation and 
increased alternative pathways including amino acids metabolism, central carbon cancer metabolism, and purine 
metabolism (Appendix V Figure S1c). As DEP analysis demonstrated specific immune protein patterns in CRC, we focused 
on enriched immune and inflammatory processes, however, there were several hallmarks of cancer enriched in CRC 
including angiogenesis, apoptotic deregulation with high levels of cell death inhibitor BCL2L1, cell-matrix adhesion, and 
EMT among others (Figure 7.2b). Among the innate immune responses, the complement cascade was activated in CRC with 
elevated levels of multiple components and regulators (Appendix V Figure S1c). These results are in agreement with our 
previous LC-MS/MS proteomics analysis of CRC plasma samples in which several of these complement proteins were also 
elevated in plasma of CRC patients compared to healthy controls including C4B, C9 and C5 as well as other proteins such as 

LBP and ITIH4 626 

Interestingly, a complex network of innate and adaptive immune processes was identified with most of the related 
proteins elevated in CRC (Figure 7.2b). Among them, innate immune and inflammatory responses including type I IFŃ 
responses, IL1 response,IL12 production, monocyte and T cell chemotaxis, Fc gamma receptor, TGFB1 and ŃF-KB signaling 
pathways were elevated in CRC.. Interestingly, enriched T cell migration and TCR signaling together with anti-tumor cell 
response proteins, such as PRF1 and the death receptor 5 (TŃFRSF10B), may indicate an active anti-tumor response. 
However, as immunosuppressor IL10 production pathway was activated and several negative T cell regulators and immune 
checkpoints (PVR and CD276)were elevated in CRC, increased PRF1 may indicate Treg cytolytic action in effector T cells. In 
fact, other immunosuppressive proteins were elevated in CRC such as 5'-Ńucleotidase Ecto (ŃT5E) that convert ATP to 

immunosuppressive adenosine, inhibiting T cell activation (Figure 7.2b) 627. Proteasome and antigen presentation were also 

enriched in CRC including classical MHCI molecules (HLA-A,-B,-C) and antigen processing proteins together with elevated 
levels of inhibitory T cell signaling such as CEACAM1, PTPRJ, and GBP1, suggesting defective T cell responses upon MHCI 
antigen presentation. 

Considering the protein signatures of immune infiltration, CIBERSORT cell fraction deconvolution was applied to infer 
the immune cellular composition within CRC TME and normal tissues. Cell fraction deconvolution resulted in a complex 
mixture of immune cell types in both tissue types with presence of diverse T cell subsets, mast cells, myeloid cells, and B 
cells (Figure 7.2d). Importantly, CRC samples were with significantly elevated levels of inferred Treg, monocyte, and activated 
mast cells but reduced resting mast cells, suggesting an immunosuppressive TME in CRC compared to normal tissue (Figure 
7.2e). Taken together, CRC tissue regions with high CD4+ T cell infiltration is characterized by multiple cancer transformation 
pathways and hallmarks such as metabolic rewiring, cell stemness, and apoptosis dysregulation. At the same time, an 
intricate network of innate and adaptive immune processes with remarkable cancer-associated inflammation and 
underlying immunosuppressive mechanisms from Treg and monocytes/macrophages supported CRC immune evasion. 

7.3.3. CRC progression is associated EMT, CAFs infiltration and ICOSL mediated 
immunosuppression 

CD4+ T cells and other immune cells are fundamental players within the TME in CRC progression and metastasis 628. To 

determine protein changes associated with CRC progression, correlation analysis was performed between cancer TŃM stage 
and protein abundances. As a result, 319 proteins were positively correlated (rho>0.4, p-value<0.05) proteins with CRC stage 
and 198 with negative correlation (rho<0.4, p-value<0.05) (Figure 7.3a, Appendix V Table S6). Altered proteins along CRC 
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progression were associated with multiple biological processes such as RŃA synthesis and processing, apoptosis with higher 
levels of CASP1 in early CRC stages, positive regulation of I−kappaB kinase/ŃF−kappaB signaling, and T cell costimulation 
among others (Figure 7.3b, Appendix Table S7). The protein with highest correlation was receptor protein tyrosine 
phosphatase δ (PTPRD) that aberrant expression can affectSTAT3 and SRC signaling contributing to cell metastasis and PD-

L1 signaling 629,630 (Figure 7.3c). Several proteins involved in cell cycle and DŃA repair were also elevated in advanced CRC 

such as POLE4 and CGGBP1 as well as key transcriptional factors AHR, FBH1, MBD1, and TCF20 or TMF1 involved in 
androgen receptor signaling. Metabolic alterations were also observed in CRC progression with elevated levels of 
glycosidases MAŃ2A2 and GAŃC that release glucose from Ń-glycans as well as PAŃK1 involved in coenzyme A biosynthesis 
that is essential for multiple metabolic processes. 

Interestingly, several positively correlated proteins were likely derived from cancer-TME interactions and CRC 
heterogeneity. For instance, the neuroendocrine marker IŃSL5 was previously found elevated in CRC neuroendocrine 

tumors and may indicate CRC tumor heterogeneity within adenocarcinoma CRC tumors 631. In addition, increasing vimentin 

may indicate an increasing EMT phenotype within CRC progression 632 together with increasing ECM remodeling by MMP2 
and MMP14 as well as CRC stemness via ASCL2. Another positively correlated protein was IGFBP5 that is involved CRC 

progression and metastasis via ECM remodeling and associated with CAFs 633–635. Importantly, FGF2 was positively 

correlated with CRC stage which may be involved in cancer invasion and secreted mainly by CAFs 636 (Figure 7.3c). In 

addition, increasing platelet factor 4 (PF4) levels were only detected in advanced CRC stages while high PF4 levels in 
circulating platelets of CRC patients were previously reported, supporting cancer invasiveness by TGFB1 platelet production 
637,638. In fact, increasing TGFB1 with CRC progression was also detected, supporting an immunosuppressive TME. Immune 

related proteins were also altered through CRC progression such as positively correlated cathepsin CSTE which may be 

involved in CRC tumorigenesis, previously proposed as a marker of colon cancer and sessile serrated adenomas 639,640. 

Moreover, increasing levels of Leukotriene B4 receptor (LTB4R), which mRŃA expression was previously reported as CRC 
prognostic predictor, is associated with CRC progression, intestinal inflammation, and is required for leukocyte migration 
641,642. At the same time, increasing TCR transducer LCK and TRAF6 may indicate T cell stimulation although cancer and 

other immune cells can express LCK and TRAF6 with tumorigenic functions 643,644. In fact, TRAF6 was previously correlated 

with lymphangiogenesis and lymph node metastasis in CRC as well as pro-inflammatory cytokine secretion in innate 

immune responses 645. Interestingly, SUSD2 was positively correlated with CRC progression that is involved in tumorigenesis 

and inhibit CD8+ T cell anti-tumor activity 646. Ńoteworthy, increasing immune checkpoint ICOSL with CRC progression may 

indicate an immunosuppressive TME (Figure 7.3c). 
Several immune related proteins were also negatively correlated with CRC progression such as ITGB6 involved in CD8+ 

T cell suppression or CCL24, eotaxin-2, that was downregulated compared to CRC tissue (Figure 2a, 3c). CCL24 is produced 
in secondary lymphoid structures in normal tissue and attracts granulocytes mainly eosinophils as well as resting T cells, 

but also, CCL24 is secreted in CRC were is associated with eosinophil infiltration 647,648. Ńoteworthy, decreasing levels of 

MHC-I proteins (HLA-B,-C) and MHC-I adaptor B2M according to CRC progression, confirm a well-established mechanism of 

immune evasion 649.Moreover, IRF5 reduction with CRC progression may be associated with M2 macrophage polarization 
650. Similarly, the immune checkpoint LGALS9, that can promote the immunosuppressive TME through TIM3 interactions 

with CD8+ T cells and Tregs 651, was decreasing with CRC progression. Taken together, protein changes associated with CRC 

progression suggested the transcriptional reprogramming within TME with metabolic adaptions, EMT signatures, and ECM 
remodeling. Moreover, these protein changes may reflect TME heterogeneity with increased neuroendocrine IŃSL5, CAF-
related proteins including FGF2 and IGFBP5, activated platelets, and relevant immunosuppressive mechanisms including 
SUSD2, ICOSL, IRF5, LGALS9, and reduction of MHC-I presentation among others. 
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Figure 7.3. CRC progression and protein changes associated with EMT, CAFs, and immunosuppression. (a) Heatmap of significantly 
correlated proteins with CRC progression order by decreasing rho value and samples order in increasing CRC stage with z-score 
normalization (correlation rho vales on the right). (b) Bubble plot of selected GO-BP from significantly correlated proteins with TŃM stage. 
(c) Scatter plots of selected significant correlated proteins with cancer TŃM stage and relative protein abundance.  
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7.3.4. Proteomic changes linked to Treg infiltration in CD4+ enriched CRC tissues 

Previous comparison between CRC and normal tissue resulted in higher Treg infiltration. Considering the fundamental 
role of Treg infiltration in CRC immune evasion, correlation analysis was performed between CIBERSORT inferred Treg 
fractions and protein abundances along CRC tissues to determine potential protein association with Tregs. As a result, 380 
proteins were significantly positively correlated and 77 were negatively correlated with inferred Treg fractions (Figure 7.4a, 
Appendix V Table S8). Pathway enrichment analysis via active subnetworks demonstrated elevated oxidative 
phosphorylation that supports Treg differentiation 652,proteasome processing and high MHC-II antigen presentation, TCR 
signaling and T cell cytotoxicity as well as other processes such as Arp2/3 complex−mediated actin nucleation, apoptosis 
regulation, cell-cell adhesion, Fc−epsilon receptor signaling, and histone deacetylation among others (Figure 7.4b, Appendix 
V Table S9). 

High MHC-II presentation, increasing MHC-I proteins HLA-A and HLA-F, immunoproteasome subunits PSMB8 and 
PSMB9, and MHC-I processing TAPBP and GILT may indicate co-existence of APCs with increasing Treg fractions (Figure 
7.4c). Meanwhile, inflammatory-associated proteins S100A8, S100A9, and pro-tumorigenic S100P were positively 
correlated with Treg content. Increasing levels of integrins ITGAM and ITGB2 were associated with Treg fractions and both 

are involved in innate immune responses to complement-opsonized pathogens as well as T cell migration 653,654. Similarly, 

FCER1G was linked to Treg content that could indicate the presence of mature regulatory DCs, a subset of highly 

immunosuppressive DCs with high indoleamine 2,3-dioxygenase (IDO)-1 production and CXCL9 deregulation 655. In fact, 

IDO1 and arginase ARG1 were positively correlated with Treg fraction, supporting an immunosuppressive metabolic 

rewiring within enriched CD4+ T cell CRC tissues with high Treg fractions 656,657. Increasing deacetylases SIRT1 and SIRT2 

with Treg content may be associated with this immunosuppressive metabolic TME via deacetylation of key metabolic 

enzymes 131. In contrast, ITGA4 and IFITM3 were negatively correlated with Treg fractions. Low integrin ITGA4 was 

previously associated with poor CRC prognosis and positively correlated with Th17 and immature DCs in CRC 658. 

Importantly, IFITM3 is required to promote anti-tumor activity via perturbation of FOXP3 in tumor-infiltrating Tregs 659 

(Figure 7.4c). Taken together, Treg-linked protein changes within CRC TME are associated with APCs with 
immunosuppressive phenotypes via metabolic alterations including tryptophan and arginine T cell depravation. 
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Figure 7.4. Treg fractions and associated protein changes. (a) Heatmap of significantly correlated proteins with Treg fractions order by 

decreasing rho value and samples order in increasing inferred Treg fraction with z-score normalization (correlation rho values on the right) 
(b) Bubble plot of selected GO-BP from significantly correlated proteins with Treg fractions. (c) Scatter plots of selected significantly 
correlated proteins with inferred Treg fractions and relative protein abundance.  
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7.3.4. CRC TME protein changes are associated with CD4+ T cell pro-inflammatory factors, 
CEACAMs, ARG1, and the novel chemotactic receptor MCEMP1 

Our analysis revealed immune heterogeneity and the inflammatory/immunosuppressive processes within CRC TME 
enriched in CD4+ T cells and other immune cells. However, bulk proteomics analysis of complex tissue samples is limited in 
determining the cells expressing identified proteins. Therefore, a complementary analysis of public datasets to infer specific 
cell expression was performed. The first dataset comprised proteomics data from sorted CD4+ T cells and CD8+ T cells of 

CRC and normal-matched tissue 574 to infer protein changes in CRC TME derived from T cells. The main findings from Che et 

al. 608 were that elevated LCŃ2 induces T-cell apoptosis via iron efflux deregulation which our analysis supported with 

elevated LCŃ2 levels within immune CRC TME (Figure 7.2a). According to their reported results, cancer-associated 
inflammation proteins S100A8, S100A9, and S100P were higher in both tumor-infiltrating CD4+ and CD8+ T cells compared 
to normal counterparts while S100A12 and MMP2 were only elevated in tumor infiltrating CD8+ T cells. Moreover, adhesion 
proteins, CEACAM5 and CEACAM6, as well as pro-inflammatory MIF were elevated in CRC CD4+ T cells but not in CD8+ T 

cells. In fact, CEACAM6 was associated with FOXP3 and T cells in CRC progression 660. These common results suggest that 

protein changes within TME are partly originated from infiltrated T cells. 

Ńext, scRŃA-seq data from CRC and normal matched tissue of 72 CRC patients 661 was used to infer specific cell 

expression of detected protein changes. For instance, genes from commonly increased proteins between our analysis and 
Che et al. 574 were with higher expression in tumor-infiltrating T cells than normal counterparts in scRŃA-seq dataset. 
However, gene expression stems from other cell types such as LCŃ2, CEACAM5, and CEACAM6 highly expressed in tumor 
cells or S100A8 and S100A12 in myeloid cells (Figure 7.5a). Interestingly, a tendency to higher fractions of LCŃ2+ Treg and 
anti-tumor CXCL13+CD8+ T cells 662 was observed within CRC T cell subsets, suggesting a potential role in Treg-mediated 
immunosuppression of cytotoxic T cells. Another increased protein in CRC tissue was CEACAM1 which was confirmed in 
scRŃA-seq data to be highly expressed by CRC infiltrating Tregs. Interestingly, the Gram-negative bactericidal BPI was only 
found in CRC tissues, mainly expressed by stem-like CRC cells and some macrophages/monocytes. Meanwhile, increasing 
proteins with CRC progression including FGF2 and PTPRD were mainly expressed by CAFs and CRC cells. From correlated 
proteins with inferred Treg fractions, ARG1 was only expressed from a minor portion of cells in this scRŃA-seq dataset, 
mainly macrophage/granulocytes, low fraction of epithelial cells, and CRC infiltrating Treg and follicular helper T cells (Tfol) 
(Figure 7.5a). Ńoteworthy, the recently characterized immune receptor MCEMP1 was consistently quantified in CD4+ and 
CD8+ T cells with a tendency to be expressed at higher levels in tumor-infiltrating CD4+ T cells (paired t-test: logFC = 0.53, 
p-value = 0.06), but not in CD8+ T cells, suggesting a relevant role in CD4+ T cells within the CRC TME (Figure 7.5b). Similarly, 
scRŃA-seq confirmed MCEMP1 expression mainly in CRC monocyte/macrophage, granulocytes, CRC stem-like cells, and 
importantly, several T cell subsets with a high fraction of MCEMP1+Tregs within them (Figure 7.5a, 7.5c, Appendix V Figure 
S2). Taken together, our proteomics analysis reflected protein changes that may be associated with specific cell subsets 
within the TME, especially from myeloid and T cells, several of them playing a relevant role in tumor immunity and 
immunosuppression. 
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Figure 7.5. Protein changes are associated with specific cell components of CRC TME. (a) Box and whisker plots of normalized mRŃA 
expression in scRŃA-seq dataset from Pelka et al. 661 in main cell types separated by tumor and normal tissues. Each small black dot 
represents the gene expression of a single cell. (b) Paired box plots of normalized abundances of MCEMP1 between CRC-infiltrating CD4+ 
and CD8+ T cells and normal counterparts, respectively. (c) Box and whisker plots of normalized mRŃA expression along T cell subtypes 
separated from CRC and normal tissue. 
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7.4. Discussion 

Immune cell infiltration plays a relevant role within CRC TME via supporting tumor growth, invasion, and drug resistance 
among others 565. In this study, deep DIA proteomics characterization of CRC tissue and normal matched tissue enriched in 
CD4+ T cells and other immune cells was performed to determine protein changes within CRC TME involved in CRC 
development, progression, and immune infiltration. CRC and normal-matched tissue samples were consistently different in 
their protein composition. In fact, selectively detected proteins reflected CRC tumorigenic processes with key epigenetic and 
transcriptional regulators. At the same time selective expression in only normal tissue of BEST4, a marker of absorptive cells, 
and CCL19, specific for secondary lymph nodes and previously found associated with anti-tumor CD8+ T cells in TCGA 
datasets and breast cancer 663, confirmed disrupted tissue integrity and reduction of anti-tumor CD8+T cells within studied 
CRC tissue, respectively. Mainly, protein changes within TME CRC reflected an active cell cycle with associated biological 
processes such as DŃA repair, RŃA synthesis, spliceosome, and protein refolding under high proliferation. Moreover, key 
CRC stem-cell markers such as ASCL2 involved in CRC progression, PROM1, and LGR5, for which CAR-T cell therapy is 
currently under development 664 were identified in CRC samples. Other proteins related to hallmarks of cancer were altered 
such as angiogenesis with elevated FLT1 associated with increasing microvessels in CRC 665, apoptosis deregulation with 
anti-apoptotic BCL2L1 and TŃFRSF6B associated with poor CRC prognosis 666,667 or EMT with EPCAM reduction and 
transcriptional factor MACC1 via HGF/MET signaling 586. 

Importantly, protein expression patterns in CRC TME reflected changes in their cell composition compared to normal-
matched tissue. Although several key cell markers are missing due to their low abundance within CRC TME, CIBERSORT can 
deconvolute and estimate cell fractions in bulk samples. Inferred immune cell fractions suggested an increased 
immunosuppressive environment compared to normal tissue with higher fractions of Treg, monocytes, and activated mast 
cells. Meanwhile, protein changes revealed further cell composition changes linked to alterations in innate and adaptive 
immune responses. For instance, innate immune proteins dedicated to intestinal defense against pathogens such as ZG16 
and FGCBP together with plasma-derived IgA were reduced while B cells may be increased with high IgGs, CD81, and IGBP1 
in CRC TME. Also, ŃK cell marker CD56 was reduced similarly to previous studies based on IHC staining 668. Among innate 
immune proteins, BPI was elevated in CRC tissues and in CRC stem-like and myeloid cells from the scRŃA-seq dataset. BPI 
was previously reported to be associated with IBD, but not in CRC, and was proposed as an anti-angiogenic factor 669. BPI 
may play a role within TME-infiltrated microbiota and can attenuate inflammation by competing with LBP 670. Surprisingly, 
complement cascade members are involved in tolerogenic cell death and immunosuppressive TME with the recruitment of 
Treg, M2 macrophages, and myeloid-derived suppressor cells (MDSCs). Among the complement-related proteins, we 
identified elevated soluble Factor H, responsible for creating anti-inflammatory responses, and elevated negative 
complement regulators CD46 and CD55, responsible for dampening the complement cascade 671. 

Several CAF-related proteins were increased in CRC tissue including SPARC, associated with CRC invasion 596,CD90, 
supported by a previous study which demonstrated CRC CD90+ stromal cells are main IL6 producers, promoting cancer-
associated inflammation 597, and also can produce immunosuppressive ŃT5E 672. Active ECM remodeling with high levels 
MMPs in CRC tissue may indicate the co-existence of CAFs and myeloid cells that are involved in CRC progression and 
metastasis. In fact, multiple myeloid related proteins were elevated including GBP1, together with GBP2, that is required for 
autophagosome maturation and activated by interferon type I and II stimulations. In fact, GBP1 was associated with 
immunosuppressive M2 macrophage phenotype in previous studies 673. Moreover, GBP1 can inhibit T cell activation by 
reducing IL2 production via IFŃG 674. Elevated levels of LCŃ2 together with lactotransferrin (LTF) may also counteract 
exacerbated inflammation and promote T-cell death via ferroptosis 675,676. Interestingly, high LCŃ2 expression in infiltrating 
Treg populations found in scRŃA-seq data is according to a previous study that demonstrated Treg differentiation via LCŃ2 
characterized by non-classical HLA-G expression in vitro 677, suggesting additional immunoregulatory functions of LCŃ2 
within CRC TME. Although antigen presentation and TCR signaling related proteins were found to be elevated in CRC TME, 
we also identified several immunosuppressive signals present in CRC tissue, such as immune checkpoints (CD276 and PVR) 
and the well-established immunosuppressor TGFB1 which also correlated with CRC progression. At the same time, PRPRJ 
was also increased in CRC while a recent proteomics study performed in circulating immune cells of CRC patients 
demonstrated that increasing PTPRJ levels are responsible for effector CD4+ T cell suppression along CRC progression 
678.Moreover, increased non-classical HLA-F can negatively regulate ŃK cells via this alternative antigen presentation of a 
limited variety of peptides which is a potential reason for the observed reduced CD56 marker in CRC tissues 679. 

Among identified proteins, we identified novel associations of FGF2 and ICOSLwith CRC progression. Previous stitudies 
found that FGF2 contributes to CRC invasiveness in vitro and angiogenesis. FGF2 is secreted mainly by CAFs butcan also be 
produced in an autocrine manner by CRC cells as observed in the CRC scRŃA-seq dataset 680,681. Ńoteworthy, the immune 
checkpoint ICOSL positively correlated with CRC progression may increase M2 macrophages and plasmacytoid DCs that 
induce Treg phenotypes characterized by TGFB1 and IL10 secretion 682. Meanwhile, inferred Treg fractions were associated 
with oxidative phosphorylation and active antigen presentation from APCs including GILT. GILT was previously linked to 
tolerogenic responses to breast cancer and melanoma tumor antigens via induction of Treg differentiation. Recently, GILT 
was also associated with PD-L1 signaling in breast cancer 683,what highlights the potential role of GILT in immune tolerance 
to CRC 684,685. Interestingly, ITGB2 was previously correlated with Treg and MDSC infiltration in non-small-cell lung cancer 
(ŃSCLC) and Treg-DC interaction via ITGB2 resulting in impaired antigen presentation and T cell activation 686,687. 
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Importantly, protein changes reflected metabolic rewiring within CRC TME showed by reduction of oxidative 
phosphorylation, alterations in glycolysis compensated with one carbon, amino acid, nucleotide, and lipid metabolism 
activation. Fatty acid metabolism inducers SULT2B1 was recently reported linked to CRC development and LYAR may 
contribute to cancer invasion via activation of lipid metabolism 688,689. Accumulated evidence demonstrated that metabolic 
alterations are responsible of immune evasion and immunosuppressive mechanisms 690. For instance, in this study, multiple 
proteins involved in metabolic immunosuppression were reported. Selective expression of KYŃU was only detected in CRC 
and IDO1 was correlated with inferred Treg fractions while AHR was elevated in CRC and associated with CRC progression. 
Taken together, these results suggested that active tryptophan deprivation based immunosuppression was increased in CRC 
TME, previously associated with IBD and CRC 591. Interestingly, SIRT1 and SIRT2 were correlated with Treg fractions and 
previous proteomics studies in CRC, melanoma, and lung cancer mice models determined that SIRT5 enhances Tregs 131 
while SIRT2 can promote T cell exhaustion via deacetylation 132. Apart from tryptophan metabolism, increased levels of the 
transporter SLC6A6 in CRC TME are involved in a novel immunosuppressive mechanism through taurine deprivation. 
Previously, SCL6A6 overexpression was found in CRC tissues and associated with chemotherapy resistance in vitro and in 
vivo 691, while a recent study in gastric cancer demonstrated that cancer SLC6A6 overexpression cause taurine deprivation 
resulting in CD8+ T cell dysfunction and exhaustion 692. Another metabolic enzyme, ARG1, was found associated with CD15+ 
bone-marrow derived cells in CRC and was associated with poor prognosis 693,694. Recently, ARG1+ granulocytes and IDO1 
monocytes were analyzed in CRC and their spatial pattern distribution may be associated with CRC prognosis, however, 
immunosuppression was not addressed in this tissue microarray multiplex IHC study 695. In our study, ARG1 was positively 
correlated with Treg fractions and scRŃA-seq dataset analysis confirmed its expression in myeloid cells and in CRC-
infiltrating Treg and Tfol, suggesting T cell effector suppression via arginine deprivation. 

For the first time, the novel chemotactic regulator MCEMP1 was only detected within the CRC TME and confirmed in 
CD4+ T cells isolated from CRC compared to normal tissue 574.Public CRC single-cell expression showed MCEMP1 expression 
mainly in CRC monocyte/macrophage, granulocytes, CRC stem-like cells, and importantly, several T cells subsets with a high 
fraction of Tregs. MCEMP1 was primarily found in mast cells in which can regulate proliferation within lungs 696,697. Recently, 
TGFB1-mediated activation of MCEMP1 was found in classical monocytes and alveolar macrophages in which MCEMP1 
regulates migration and adhesion 698. Another study in a mice sepsis model showed that MCEMP1 is upregulated in sepsis 
and promotes T cell apoptosis and inhibits their viability 699. Interestingly, an in silico study in CRC mRŃA data showed that 
FOXP3 and MCEMP1 were correlated with liver metastasis while in gastric cancer it was included in a gene prognostic 
signature associated with Treg 700,701 Further studies are needed to unveil MCEMP1 function in T cells, especially in 
infiltrating Treg within CRC TME as well as other immune cells. 

This study was limited by the number of involved patients and limited tissue material, although robust proteomics 
analysis ensured deep proteome characterization of the CRC TME. Although bulk proteomics analysis of composed tissue 
samples limits to determine cell specific protein expression and their full spatial distribution, the usage of public proteomics 
and scRŃA dataset could facilitate cell composition of the CRC TME. However, new combinational multi-omics approaches 
with emerging single-cell proteomics and spatial proteomics would provide deeper understanding of CRC underlying 
immune responses. 

This study characterized the immune regulatory network that included co-stimulatory and inhibitory signals reflecting 
the complexity of immune responses within CRC TME. Moreover, protein signatures linked to CRC progression and Treg 
content within CRC TME were found. Cancer-associated inflammation and immunosuppressive mechanisms are disbalanced 
with co-existence of multiple processes from exacerbated inflammation to immune checkpoints and metabolic deprivation 
immunosuppressive mechanisms. Moreover, proteomics changes within CRC TME enriched in CD4+ T cells and other 
immune cells reflected immune TME heterogeneity with higher inferred fractions of Treg and monocytes. Our studied 
unveiled novel immune regulators involved in CRC that may facilitate the functional validation of immune-regulatory 
proteins for therapeutical application. 

CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS 
This thesis focused on the application of proteomics strategies to characterize protein changes related to immune 

responses in inflammation and cancer in two different disease contexts, COVID-19 and CRC. We hypothesized that 
proteomics characterization could allow to discover novel immune related proteins and potential biomarkers.  

In SARS-CoV-2 studies, the combination of orthogonal proteomics LC-MS/MS and proximity extension assay 
technologies determined protein signatures common for these COVID-19 patients with comorbidities. Several novel innate 
immune proteins were altered as expected in viral infections with activated complement and coagulation cascade, acute-
phase proteins such as α-2-antiplasmin possibly associated with post-COVID19, and anti-viral BST2. Complementary 
adaptive immune responses were also altered in COVID-19 patients with comorbidities, such asCD4, CD28as well as orphan 
receptor LILRA5, which is involved in monocyte activation. Moreover, several markers of tissue remodeling and damage 
were elevated in COVID-19 plasma, such as K22E, MATN2, COL6A3, and ECM1. Ńot previously reported,RŃF41 was reduced 
in COVID-19, being a potential biomarker. At the same time, several protein changes were associated with antibody 
generation and time of infection that provided novel insights within plasma proteome changes in SARS-CoV-2 infection. 
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The optimized protocols were applied with the same proteomics approaches in plasma samples collected from CRC 
patients. This led to the characterization of altered protein levels caused by CRC development. Mainly, pro-inflammatory 
proteins LBP and SAA4 and cytokines such as MDK, IL6, CSF3, and CCL20, and SERPIŃ family members were increased in 
CRC. Importantly, complement cascade components were increased in CRC plasma samples. Increased C5 levels in CRC 
patients were validated in an additional cohort while C4B and C8A were linked to CRC progression and cancer-associated 
inflammation. Other proteins linked to cancer-associated inflammation including pro-inflammatory CSF3, acute-phase 
protein LGR1, metabolic regulator ACP6 also associated with CRC progression, and immune checkpoint CD276, suggesting 
different immune checkpoint patterns under cancer-associated inflammation conditions. For the first time, elevated CXCL9 
and CCL23 plasma levels together with IFŃG were identified and validated in an additional cohort, both chemoattractants 
of T cells and other immune cells but not well-established their effect in immune responses to CRC. Ńoteworthy, altered 
proteins were enriched in Th17 differentiation, oncogenic pathways, increased apoptotic markers, and altered metabolic 
proteins. Taken together, CRC development causes plasma protein changes that may reflect altered cancer pathways and 
promote systemic inflammation that can facilitate CRC progression and metastasis 702. 

Proteomics characterization of CD4+ T cell enriched CRC tissues enriched ROIs identified tumor related proteins 
involved in multiple hallmarks of cancer. Moreover, protein changes reflected a complex interaction between fundamental 
proteins of innate and adaptive immune responses with most of them elevated within CRC TME. In the TME, co-existence of 
pro-inflammatory signals such as S100A12, S100A8, S100A9 and immunosuppressive signals such as TGFB1, PVR, ŃT5E, 
and CD276 orchestrate CRC immune evasion. Moreover, key markers showed the cell heterogeneity within CRC TME in which 
CAFs secreted FGF12 and myeloid cells derived ICOSL were linked to CRC progression. Multiple immune cell types were 
inferred from proteomics data with reductions of ŃK cell CD56 marker and IgA while increased Treg, monocytes, and 
activated mast cells supporting CRC TME compared to normal tissue. Potential effects on T cell dysfunction by SIRT1/2 
deacetylation within CRC TME emphasized the need of further studies to evaluate PTMs profiles. Metabolic reprogramming 
and immunosuppression by metabolic deprivation occurred simultaneously in CRC. Among related proteins, Treg/Tfol ARG1 
production may be a novel immunosuppressive mechanism in CRC. Moreover, our findings suggest that the novel 
chemotactic MCEMP1 may be involved in migration and adhesion of CD4+ T cells in tumor tissue, especially Tregs. Further 
validation studies are required to confirm specific cell expression and location of these novel markers. Then, functional 
studies in vitro and in vivo with orthogenic mice models may lead to uncover their role in CRC.  

As the observed multiple orchestrated immunosuppression in CRC TME, one of the main causes of immunotherapy 
failure is acquired resistances by alternatives immunosuppressive mechanisms 562. Therefore, further studies must focus on 
the characterization of the TME to design successful therapies that can counteract this plethora of pro-tumorigenic 
processes. As complex tissue bulk proteomics cannot determine cell type origin, public scRŃA data and sorted CRC T cells 
proteomics data were used to infer specific sample expression. However, tissue disruption losses the spatial location which 
is fundamental within the TME209. Further studies must consider the isolation of specific cells within the tissue but keeping 
the tissue structure and location information. Current advances in single-cell proteomics allow for single-cell isolation from 
tissue slides by LCM followed by high-resolution mass spectrometry analysis. Therefore, further studies must apply single-
cell proteomics with spatial information. An attractive approach can be combined with targeted Imaging Mass Cytometry in 
consecutive slides to gain insights into the 3D spatial distribution of the proteomic landscape of the TME. This strategy would 
be scalable to multi-omics analysis from consecutive slides for a more comprehensive molecular characterization of the 
immune responses underlying in the CRC TME. 

Both plasma proteomics studies determined novel protein changes and immune regulators that are associated with the 
corresponding pathophysiology of SARS-CoV-2 infection and CRC, respectively. Further studies with larger and more diverse 
cohorts will facilitate the implementation of these potential biomarkers. From the technical point of view, untargeted MS-
based proteomics analysis is limited to identify low abundance proteins due to the high dynamic range of blood protein 
content is fully untargeted without prior selection. Meanwhile, antibody-based approaches are pre-selected and rely on the 
availability of the specific antibodies. Therefore, the combination of both orthogonal proteomics strategies maximized 
protein identification and quantification by circumventing the limitations of each other. Furthermore, recent advances in 
Proximity Extension Assay with over 5000 targeted proteins while MS-based proteomics combined with nanoparticle 
protein coronas improve the limited low-abundance protein detection being promising tools for future experiments 472. 
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APPENDICES 

APENDIX I. SUPPLEMENTARY MATERIAL OF CHAPTER 3 

Table S1. Clinical details from the COVID-19 patients with comorbidities, corresponding controls, time of sampling, and 
severity. 

Table S2. List of differentially expressed proteins with UŃIPROT identifier between patients with comorbidities and their 
healthy controls with the corresponding fold change as (patients with comorbidities (CP) - healthy controls(HC)) and the 
adjusted p-value. 

Table S3. List of KEGG enriched terms of differentially expressed proteins between patients with comorbidities and their 
healthy controls. 
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Table S4. List of differentially expressed proteins with UNIPROT identifier between patients with comorbidities and 
their disease controls with the corresponding fold change as (patients with comorbidities (CP) - disease controls (DC)) and 
the adjusted p-value. 

Table S5. List of KEGG enriched terms of differentially expressed proteins between patients with comorbidities and their 
disease controls. 

Table S6. List of differentially expressed proteins with UNIPROT identifier between patients without comorbidities and 
their healthy controls with the corresponding fold change as (patients without comorbidities(NP) - healthy controls(HC)) 
and the adjusted p-value. 

Table S7. List of KEGG enriched terms of differentially expressed proteins between patients without comorbidities and 
their healthy controls. 

Table S8. List of differentially expressed proteins with UNIPROT identifier between patients with early versus late 
infection with the corresponding fold change as (patients with early infection (E) - patients with late infection (L)) and the 
adjusted p-value. 

Table S9. List of KEGG enriched terms of differentially expressed proteins between early and late SARS-CoV-2 infection. 

APENDIX II. SUPPLEMENTARY MATERIAL OF CHAPTER 4 

Figure S1. Protein expression in clinical groups and altered pathways in patients. (a) Heatmap of differentially expressed 
proteins (DEPs) between patients infected with SARS-CoV-2 with comorbidities and healthy controls, with z-score by row 
normalization and distributed by hierarchical clustering. (b) Ńetwork of KEGG-enriched terms from DEPs between patients 
with comorbidities and healthy controls. Green (upregulated in patients) and red (downregulated in patients) dots indicate 
statistical DEPs. The node size indicates the number of genes involved in the term. 

Figure S2: Protein expression in clinical groups and altered pathways in patients. (a) Heatmap of the DEPs among 
patients with comorbidities, patients without comorbidities, healthy controls, and disease controls with z-score by row 
normalization and distributed by hierarchical clustering. The 3 clusters were generated by K-means algorithm. (b) Venn 
diagram with DEPs of patients with comorbidities versus healthy controls, DEPs of disease controls versus healthy controls, 
and DEPs of patients with comorbidities versus disease controls. The red and blue arrows represent upregulation and 
downregulation, respectively. 

Figure S3: Clusters of protein expression in clinical groups by mean. Heatmap of the mean of DEPs for each clinical group 
among patients with comorbidities, patients without comorbidities, healthy controls, and diseases controls with z-score by 
row normalization and distributed by hierarchical clustering. The 5 clusters were generated by K-means algorithm. 

Figure S4: Cell-specific expression of selected proteins from the Human Protein Atlas. Bar plot with relative 
quantification (score) for each protein in different cell types. 

Table S1. List of DEPs between patients with comorbidities and corresponding healthy controls with the fold change 
expressed as patients with comorbidities—healthy controls (CP-HC). 

Table S2: List of DEPs identified as secreted proteins in human blood in the Human Protein Atlas. 
Table S3: List of DEPs between patients with comorbidities and disease controls with the fold change expressed as 

patients with comorbidities—disease controls (CP-DC). 
Table S4: List of DEPs between patients without comorbidities and their healthy controls with the fold change expressed 

as patients without comorbidities—healthy controls (CP-DC). 
Table S5: List of DEPs between patients with early collection of sample after SARS-CoV-2 infection and late collection 

with the fold change expressed as early–late (E-L) 
Table S6: List of DEPs between patients with antibody generation against SARS-CoV-2 and without antibody generation 

with the fold change expressed as antibody generation–non-antibody generation (Ab+-Ab−). 
Table S7: List of major comorbidities, BMI and medications of the major comorbidities of patients with COVID-19. 

APENDIX III. SUPPLEMENTARY MATERIAL OF CHAPTER 5 

Figure S1. Heatmap of DEPs between CRC patients and healthy subjects with z-score by row normalization and 
distributed by hierarchical clustering. 

Table S1. List of proteins only identified in CRC patients and healthy subjects, respectively. 
Table S2. List of identifed proteins by proteomics analysis with Uniprot entries, names and associated Gene Ontology 

terms. 
Table S3. List of differentially expressed proteins (DEP) between CRC patients and healthy subjects with the 

corresponding fold change expressed as (Patient-Control) and adjusted p-value. 
Table S4. KEGG enriched terms in colorectal cancer patients determined by pathway enrichment analysis via active 

subnetworks with the DEPs from CRC patients vs healthy subjects. 
Table S5. List of significantly correlated proteins with cancer-associated inflammation in CRC patientswith the 

corresponding coefficients and p-values. 
Table S6. List of differentially expressed proteins (DEP) between CRC patients with and without cancer-associated 

inflammation with the corresponding fold change expressed as (Inf.-Non-Inf.) and adjusted p-value. 
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Table S7. List of significantly correlated proteins with tumor stages in CRC patientswith the corresponding coefficients 
and p-values. 

Table S8. List of differentially expressed proteins (DEP) between CRC patients with late and early stages with the 
corresponding fold change expressed as (Late-Early) and adjusted p-value. 

APENDIX IV. SUPPLEMENTARY MATERIAL OF CHAPTER 6 

Figure S1. Plasma protein changes and biological processes induced by colorectal cancer. (a) Heatmap of the 
differentially expressed proteins (DEP) among CRC patients and healthy controls with z-score by row normalization and 
distributed by hierarchical clustering. The 2 clusters are generated by the K-means algorithm. (b) Dot plot with statistically 
significant Gene Ontology enriched terms from Gene Set Enrichment Analysis (GSEA) after false discovery rate (FDR) 
correction. p.adjust, adjusted p-value. 

Table S1. List of proteins included in the Olink 384-Oncology Explore panel with their respective Uniprot accession and 
gene name. 

Table S2. List of proteins included in the Olink 384-Inflammation Explore panel with their respective Uniprot accession 
and gene name 

Table S3. DEPs between patients and age and sex-matched healthy controls. The Fold Change is defined as Patient-
Healthy control (P-C). 

Table S4. KEGG enriched terms for the 202 DEPs between CRC patients and healthy controls. Each term contains an 
associated description, the size of the gene set, the enrichment score, the normal enrichment score (NES), the p-value; 
adjusted p-value, q-value, the rank, and the core enrichment with the ENTREZ identifiers of the enriched proteins 

Table S5. GO enriched terms for the 202 DEPs between CRC patients and healthy controls. 
Table S6. DEPs between CRC patients and healthy controls that are identified in the human blood secretome from Human 

Protein Atlas. 
Table S7. Proteins significantly correlated with inflammation status with the corresponding correlation coefficient and 

p-value. 
Table S8. DEPs between patients with and without inflammation. The FC is defined as patients with inflammation - 

patients without inflammation (Inf-NonInf). 
Table S9. KEGG enriched terms for the 26 DEPs between CRC patients with and without inflammation. Each term 

contains an associated description, the fold enrichment, the occurrence, the support, the lowest/highest p-value in the 
iterations, as well as the up/down-regulated proteins. 

Table S10. Proteins significantly correlated with cancer stage with the corresponding correlation coefficient and p-value. 

APENDIX V. SUPPLEMENTARY MATERIAL OF CHAPTER 7 

Figure S1. Main pathway alterations in CRC compared to normal tissue. (a-b) Bubble plots of top 20 enriched terms of 
Gene Ontology and KEGG. (c) Ńetworks of increased proteins in CRC samples involved in complement and coagulation as 
well as different metabolic pathways. 

Figure S2. Box and whisker plots of normalized expression of ARG1 and MCEMP1 in myeloid cells from Pelka et al. scRŃA 
dataset. 

Table S1. Clinical characteristics of included CRC patients. 
Table S2. Detection rate percentages of protein groups in cancer and normal samples. 
Table S3. List of differentially expressed proteins between cancer and normal tissues with their corresponding protein 

name (Uniprot), logarithmic fold change (log2FC) and adjusted p-value. 
Table S4. List of enriched Gene Ontology (GO) terms using differentially expressed proteins as input for PathfindR 

analysis with the corresponding fold enrichment, metrics, adjusted p-values and involved up-/down-regulated proteins. 
Table S5. List of enriched KEGG terms using differentially expressed proteins as input for PathfindR analysis with the 

corresponding fold enrichment, metrics, adjusted p-values and involved up-/down-regulated proteins. 
Table S6. List of significantly correlated proteins with TŃM stage. 
Table S7. List of enriched Gene Onotology (GO) terms using correlated proteins with TŃM stage as input for PathfindR 

analysis with the corresponding fold enrichment, metrics, adjusted p-values and involved up-/down-regulated proteins. 
Table S8. List of significantly correlated proteins with Treg fractions. 
Table S9. List of enriched Gene Onotology (GO) terms using correlated proteins with Treg fractions as input for PathfindR 

analysis with the corresponding fold enrichment, metrics, adjusted p-values and involved up-/down-regulated proteins. 


