Forward genetic studies of gene essentiality and sporulation in Clostridium difficile

Marcin Dembek

Institute for Cell and Molecular Biosciences, Newcastle University, UK

Clostridium difficile is the most common cause of antibiotic-associated intestinal infections and a significant cause of morbidity and mortality. Therapeutic intervention largely relies on a small number of broad-spectrum antibiotics, which further exacerbate intestinal dysbiosis and leave the patient acutely sensitive to reinfection. *C. difficile* spores are the primary infectious agent and are required for both disease transmission and recurrence, representing an attractive target for intervention. A detailed understanding of the cellular processes that underpin *C. difficile* sporulation and germination could thus have direct implications in infection control and the development of novel therapeutics. To date, this has been hampered by a lack of genetic tools for dissecting the organism.

In order to address these limitations, we developed a new method for rapidly generating large numbers of transposon mutants in clinically important strains of *C. difficile*. We validated our transposon mutagenesis approach in a model strain of *C. difficile* and then generated a comprehensive transposon library in the highly virulent epidemic strain R20291 (027/BI/NAP1) containing over 70,000 unique mutants. Using transposon-directed insertion site sequencing (TraDIS) we have identified a core set of 404 essential genes, required for growth *in vitro*. We then applied this technique to the process of sporulation, an absolute requirement for *C. difficile* transmission and pathogenesis, identifying 798 genes required to produce viable spores. The data generated in this study will form a valuable resource for the *C. difficile* community and inform future research on this important human pathogen.